EEL 5683 Project 1 Report

Terrance Williams

February 20, 2023

Contents
1 Introduction

2 Hiwonder JetHexa ROS Hexapod Platform
2.1 Anatomy and Hardware
2.2 Movement
2.3 Software Control e
231 RobotControl
2.3.2 Robot Performance
233 Lidar e
234 Gesture Control e
24 Wireless Control e
2.5 Programmatic Control o L

3 Flow
4 Summary

A Specifications
Al JetHexa ROSRobot
A2 3DDepthCamera
A3 EAIG4Lidar. o

1 Introduction

The EEL 5683 course is a course on Autonomous Mobile Robotics. The primary
objectives is to learn how robots proceed through the perception, localization, path-
planning, and execution phases of autonomous operation. In other words, we study
the "see, think, act” cycle. This course is project-based, allowing students to work
with and gain physical intuition for concepts learned in class.

This report will serve as a platform report for the JetHexa ROS robot produced
by Hiwonder, a robotics company. The JetHexa platform was chosen to provide
an opportunity to learn ROS, work with a new robot configuration (hexapod), as
well as work with advanced perception tools such as the 3D depth camera and
Lidar. In keeping with those objectives, Project 1 served as a "grounding” project.
Time was primarily spent working with the robot-specific tools, reading provided
documentation to understand its movement and features, as well as learning the
fundamentals of ROS, mainly its underlying architecture and basic navigation and
operation commands.

>3

r
!

Figure 1: JetHexa ROS Robot

2 Hiwonder JetHexa ROS Hexapod Platform

Hiwonder’s JetHexa platform is a pre-assembled, open source ROS robot designed
for advanced learning. The version used this semester is the Advanced Kit, which,
in addition to its impressive kinematics algorithm, includes numerous perception-
based features including color detection, facial recognition, 2D and 3D mapping,
and navigation. The robot also has the ability to synchronize with other JetHexas
and perform formations, but that is beyond the scope of this project.

2

2.1 Anatomy and Hardware

The JetHexa platform is an 18-DoF hexapod robot. Each of its six legs has three de-
grees of freedom via HX-35H servo joints which allows for a wide range of complex
and simple motions through serial bus.

The platform is controlled by an Nvidia Jetson Nano Developer Kit. A power-
ful piece of hardware, the Jetson Nano has a quad-core CPU processor and 4GB
memory, leading to possibilities such as multi-threading, computer vision, and even
artificial intelligence projects’. Additionally, the computer sports a gigabit Ethernet
port, ports for display and HDMI output, and multiple USB ports for additional
peripherals and data transfer. The robot has two major peripherals: its 3D Depth

- ~ i
i o]
2

y ﬁﬁﬁp . ;
Ay ‘a K’ s I

(a) JetHexa Crouching (b) JetHexa Twisting

Camera and its Lidar, both of which aid in more advanced autonomous robotics
projects that include path planning and localization. Detailed information regard-
ing the specifications of these components may be viewed in the Appendix.

2.2 Movement

In terms of movement, the JetHexa platform operates using a Cartesian coordinate
system whose origin rests at the center of the platform’s front-face. This means that
from the frame of the robot, forward is the +x direction, left is the +y direction, and
upward is the +z direction. The robot is able to translate across an entire defined
plane (x-y axis) without changing orientation and is also able to move in the z
direction by modifying both its body height and step height. This allows the robot
to climb steps and descend steps and inclines.

In addition to translational movement, JetHexa is also able to rotate, reorient-
ing its body about the z-axis with a 360° range. It’s also able to twist about this

Ihttps://developer.nvidia.com/embedded/learn/get-started- jetson-nano-devkit
“Image Source: JetHexa Tutorials 7.3.1 - Build Coordinate System.

3

https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit

2

Figure 3: JetHexa’s coordinate axis

axis. While more limited, the robot can also rotate about the x- and y-axes to pro-
vided forward, backward, left, and/or right tilts. This ability, utilized effectively,
allows the robot to maintain balance about its center of gravity for especially in-
clined environments. While not tested in this project, the robot has been shown to
dynamically maintain balance °.

As stated, the robot can both translate and reorient about its coordinate axes.
The method in which this is done also varies. JetHexa has movement parame-
ters which allow the operator to customize the bot for desired behavior. The first
of these parameters, stride length, determines how far the robot moves in one
movement cycle (all legs have moved). The stride length ranges from 0 to 65 mm,
allowing a large range of behavior. Step height, how high JetHexa raises a given
foot, ranges from 0 : 50mm. Finally, the robot’s movement speed is adjustable, how-
ever, the concrete speed range is not known by the author at this time as the speed
of the robot depends on the stride length and the time it takes to complete a cycle,
both of which are controllable. In fact, the Hiwonder-provided control application
only lists speed in terms of percentage since stride length is also variable.

Other parameters such as rotation angle, total number of steps to move, move-
ment interruption, etc. are also able to be modified, giving the user even finer
control over the robot’s behavior. One important parameter, gait, determines fow
JetHexa completes a movement cycle. Being a six-legged platform, it can represent
N = (2k-1)! = 11! = 39.9x 10° distinct events and therefore even more gaits which
can be daunting. However, Hiwonder provides the user with two gaits, tripod and
ripple, that determines both the translational and z-axis-orienting motion.

The tripod gait consists of alternate movement of JetHexa’s legs in sets of three.
In the first half-cycle, the front-right, middle-left, and backright legs move. In the

%JetHexa Self-balancing: https://www.youtube. com/watch?v=SGzgRffqfDQ

https://www.youtube.com/watch?v=SGzgRffqfDQ

latter half-cycle, the front-left, middle-right, and backleft legs move. Movement in
this way allows the robot to remain dynamically stable because its center-of-gravity
remains within the triangle defined by the supporting legs.

EN é]lL Sﬁl =y G

{ t
body body body body

=] él[‘a.“ 2] en (2] =

a ‘ b c d

N Z

Figure 4: Tripod Gait Diagram 4

Ripple gait is little more complex to grasp intuitively. Essentially, in this gait,
two legs are always in stride while the remaining four are in support. The lifted
legs alternate based on diagonals where if, for example, the middle left leg and the
back-right leg were in motion, the backright leg would touch the ground, and the
front-right leg would then lift. The middle-leg would then touch the ground, and
the backleft leg would raise. This pattern repeats until all legs have been lifted
and swung (Ex. 3—> 5> 4 > 2 > 6 > 1 —> 5; see Figure 5). Qualitatively, this gait
resembles a spider crawling (though spiders have eight legs) and appears to be a
more fluid motion than tripod gait.

*Image Source: JetHexa Tutorials 7.1.2 - Tripod Gait Analysis.
5Tmage Source: JetHexa Tutorials 7.1.3 - Ripple Gait Analysis.

5

* 1
1 4 1 [4] 1 [4]
1) 1)
2 | body BBl [2| body | 5 B body |5
) T
[3] 6 [3] 6 3 6
E1 &2 &3
t 1
1 4 [1] 4 [1] 4
1 L
Bl body (5] [2] body [5] [z body Il
T t
3 [6] 3 [6] 3 6
E4 &5 E6

Figure 5: Ripple Gait Diagram °

2.3 Software Control

In terms of controlling the robot platform, Hiwonder provides three options. The
first option is a mobile app (WonderAi) that allows the user to select four modes
to gain familiarity with the robot’s features. The other options take the form of
wireless control via a provided PS2-styled controller and a more "traditional” ROS
control by remote desktop commands in NoMachine.

To use the WonderAi app, the user connects to the JetHexa-generated local
Wi-Fi network which allows the app to detect the platform. It has four modes
of control ("games") for the JetHexa: Robot Control, Robot Performance, Lidar, and
Gesture Control. Each mode provides an easily-accessible way to use the robot and
become familiar with its abilities.

2.3.1 Robot Control

= Height
Stride 1 60 Un
Gait Modes 60
: Speed 10
A Tripod
J % 29 %
Step Height 104 { K Down

Figure 6: WonderAi Robot Control Mode

The first WonderAi game is Robot Control °. This mode provides a general pilot-
ing method for the platform, granting the user the ability to translate and reorient
at multiple speeds, modify step height and body height, as well alternate between
the two defined gaits. Additionally, the game includes a window that displays live
images from the JetHexa’s on-board camera, allowing the user to continue to pilot
the robot when it is out of the line-of-sight and within the connection range. The

%A Hiwonder-provided video of this app in action may be seen at https://www.youtube.com/
watch?v=aaXqHSAWNVE

https://www.youtube.com/watch?v=aaXqHSAWNvE
https://www.youtube.com/watch?v=aaXqHSAWNvE

Robot Control mode was instrumental in gaining preliminary understanding of the
robot’s performance. It will be noted, however, that due to the connection latency
as a result of the relatively weak Wi-Fi connection, this mode is likely not a viable
option for piloting a full-project.

2.3.2 Robot Performance

The second game mode is Robot Performance. If the Robot Control mode is helpful for
understanding the JetHexa’s general movement, Robot Performance provides insight
into complex movements and sequences the robot can perform. This mode consists
of nine buttons and one toggle slider. The nine buttons are for ’Actions’, pre-
determined movement sequences. Eight of the nine buttons are Hiwonder-provided
actions, and the ninth button is for user-defined custom actions. The pre-defined
actions are’

Keep balance

O

Figure 7: WonderAi Robot Performance Mode

o Stretch - the robot spreads out, lying down flat on its current surface (typically
the ground). It should be noted that coming out of this position is easier on
surfaces such as rugs than hard-wood.

* Fight- The robot stands on its back four supporting legs and uses its front
two legs to synchronously wave as if posturing for a fight.

A few actions and the self-balancing mode may be seen via the following link: https://www.
youtube.com/watch?v=UDpsK0i9D98

https://www.youtube.com/watch?v=UDpsKOi9D98
https://www.youtube.com/watch?v=UDpsKOi9D98

* Kick - The robot uses its front left leg (from the perspective of a viewer
directly facing the robot) to swiftly swipe left to right (like kicking a soccer
ball)

* Attack Forward - The robot sequentially swings leg pairs forward beginning
from the hind legs, resulting in a lunging motion.

» Backward Forward - The reverse direction of the "Attack Forward" action.
* Mark Time - The robot marches in place for a brief moment.

 Twist - JetHexa runs through a sequence of body tilts to move its body in a
circular fashion (picture a hula-hoop or a precessing top)

» Wave - JetHexa uses its front leg to simulate a friendly wave.

The JetHexa tutorial series comes with instructions for creating, exporting, import-
ing, and editing actions. This ability may prove incredibly valuable for any user
who wants to create complex motions such as dances or robot aerobics.

(a) Top View (b) Isometric View
Figure 8: JetHexa Stretch Action
Finally, the mode includes a self-balancing toggle. When toggled on, the
JetHexa will be able to adjust its body posture (thereby its center of gravity) in
order to maintain its balance on surfaces of changing incline.
2.3.3 Lidar

The Lidar mode allows the user to play with pre-coded Lidar functions. It has
three Lidar modes: "Avoid Obstacle”, "Lidar Following", and "Lidar Guarding”.
Each mode uses Lidar to accomplish a different task. In Avoid Obstacle mode,

the JetHexa platform continuously moves forward. If the Lidar detects an object
within a given distance (which we can set from 0.5m to 1.5m), it will move around
the object or reverse course.
In the Lidar Following mode, the robot will follow an object at a pre-determined
distance. If the object is too close, JetHexa will move away from it, whereas, it will
move closer if the object is too far away.

Finally, in Lidar Guard mode, the JetHexa will continuously re-orient itself be

front-facing toward an object in its detection range®.

2.3.4 Gesture Control

In this mode, the user can use finger gesture to control the JetHexa’s movement.
The JetHexa uses its camera and runs computer vision to detect a hand structure.
It is able to identify the number of fingers displayed as well as certain hand shapes.
One can send translational movement commands to the robot by doing the follow-
ing: Show the JetHexa an open palm. It will identify five fingers. Next, display
only an index finger; this lets the robot know a command is about to be drawn.
Upon hearing the beep that alerts the user to begin drawing, draw a straight line
in any cardinal direction (left = move left, right = move right, up = move forward,
down = move backward). To signal the end of a command, an open palm is again
displayed. The robot will then execute the received command.

It was observed when testing this that gesture commands are misinterpreted
rather easily. This could be a user-operator error, but if this feature were to be
used in a programmatic fashion, it may be beneficial to include a form of user
confirmation for the command JetHexa interprets. Currently, the robot will execute
the command it believes is sent without confirmation.

2.4 Wireless Control

The second method of JetHexa control consists of using a wireless controller to
communicate with the provided receiver (connected to one of JetHexa’s USB ports).
The user is able to pilot the robot in real-time, with minimal latency compared to
the Robot Control WonderAi method.

The controller itself is modeled after the Sony DualShock 2. It features analog
sticks as well as a direction pad (D-pad) for movement control, polygonal buttons
for rotation and tilting, bumper buttons for speed and stride length adjustment, and
finally, START and SELECT buttons for pose and settings resets. The complete
layout is shown in Figure 9.

8Each mode is displayed in the following video:
https://wuw.youtube. com/watch?v=-1Rk16Zw-zM

10

https://www.youtube.com/watch?v=-lRkl6Zw-zM

Hiwonder JetHexa Controller Layout

R2: Decrease Step Height

L2: Decrease Speed
R1: Increase Step Height

L1: Increase Speed

Triangle: Look Up

Circle: Tripod Turn Right

Up: Ripple Forward

Left: Ripple Left
Cross: Look Down

Down: Ripple Bacloward
Right: Ripple Right
Square: Tripod Turn Left

Right Stick (Up / Down):
Raise/Lower
Body Height

Right Stick (Left/ Right):
Turn Left/Right
in Tripod Gait

Left Stick:
Tripod Gait Movement

START+SELECT; I

Body Reset & Sg)gd& E‘gg:t
Default Parameter v
Values
ON/OFF

Figure 9: JetHexa Wireless Controller Layout

11

2.5 Programmatic Control

Perhaps the most versatile of the control methods is the ability to control the
JetHexa platform with a programming language such as Python using ROS pack-
ages. Hiwonder allows the user to access the JetHexa files via "remoting” into the
JetHexa’s Jetson Nano controller. This is done by connecting to the Wi-Fi network
generated by the Jetson Nano and connecting to the remote server IP through the
remote desktop software NoMachine. Since the JetHexa platform is ROS compat-
ible, it runs a Linux distribution, allowing remote users to use the Linux shell to
interact with the robot’s system files.

Since the robot is advertised as open-source, JetHexa has made the entire source
code available for users to study. Theoretically, this means the tasks and features
the user can implement is only limited by the hardware capabilities of the JetHexa
platform, the readability of the source code, and the programming ability of the
user(s).

The JetHexa tutorials come with information on basic movements and rota-
tions, advanced speed adjustments and polygonal line movement, inverse kine-
matics, Lidar, computer vision, and more, giving the user a wealth of valuable
information for adapting these features for his or her own ends. It is important
to note that initially, when attempting to control the robot’s translational move-
ment, the ROS master would raise an error due to a duplicate node name. After
contacting Hiwonder’s support department, the following fix was provided:

sudo systemctl stop jethexa bringup.service

3 Flow

As stated previously, the JetHexa platform is powered and controlled by a Jetson
Nano computer. The computer runs Ubuntu 18.04 LTS Linux distribution and
within that distribution, it runs ROS Melodic, an operating system for robot in-
frastructure. It is at this level that the JetHexa’s subsystems communicate in order
to produce an array of behaviors. For this project’s purposes, three subsystems are
identified: computer vision, kinematics control (motion), and Lidar localization.
The coordination between the JetHexa’s components is shown in Figure 10. The
ROS subsystems are connected with dotted lines to show that their communication
is facilitated by the ROS architecture.

12

Jetson Nano

¥

Ubuntu 18.04
LTS

Computer Lidar

Vision

ROS Melodic

Localization

.| Kinematics
Control

Figure 10: General JetHexa System Flowchart

For a specific example of subsystem interplay, consider a JetHexa motion sys-
tem that uses gestures to control the robot while expecting it to navigate around
obstacles. To do this, the robot must take images from its 3D camera and run a
gesture detection algorithm to identify if a command is being sent and what the
specific command is. This is done by the computer vision subsystem. From here,
the JetHexa knows it needs to move in some specified way. The movement in-
structions are then passed to the kinematics control subsystem, causing the robot
to move as specified. As the robot moves, its Lidar system scans the surrounding
environment, identifying potential collision points within its detection range. If

13

an object is detected, it sends an alert which is passed to the kinematic control to
induce a corrective motion, preventing collision. A visual depiction of this process
is shown below.

Jetson Nano
Ubuntu

ROS

Computer Vision f=---- » Motion Control [----- Lidar

Gesture
Control

Object
Detection

Figure 11: Example of Subsystem Interplay

4 Summary

In this project, the JetHexa ROS Robot’s features and behaviors were explored. The
goal in doing so was to foster a sense of familiarity with the robot’s operation as
well as understand how to interact with the robot on multiple levels. This process
included piloting the robot with the Hiwonder-provided Android app, the wireless
controller, and programmatically via remote desktop.

Project 2 will continue this learning, moving into learning how the Lidar and 3D
camera systems are controlled by the JetHexa platform. With this and continued
study of ROS, it is the goal of the author to develop a JetHexa ROS package that
can ultimately be used for obstacle navigation and other showcasings of the robot’s
capability.

14

A Specifications

The following images highlight the specifications for the various components of the

JetHexa ROS robot”.

A1l JetHexa ROS Robot

JetHexa Parameter

Product weight
Material

Monocular camera pan-tilt
Battery

Battery life

Robot DOF

Hardware

Operating system
Software
Communication method
Programming language
Storage

Servo

Control method

Package size

Weight (with package)

2.5kg

Full-metal hard aluminum alloy
bracket (anodized)

2 DOF
1.1V 3500mAh 5C Lipo battery
60min
18D0OF

ROS controller and ROS
expansion board

Ubuntu 18.04 LTS + ROS Melodic
PC software + 05/ Android APP
USBf Wi-Fif Ethernet

Python/ Cf C++/ JavaScript

32GB TF card

HX-35H intelligent serial bus servo
Computer/ phanef handle control

387 * 356 * 210mm
(length*width*height)

3.6kg

9Tmages Sourced from the Hiwonder website: https://hiwonder.hk/products/

hiwonder- jethexa-ros-hexapod-robot-kit-powered-by-jetson-nano-with-lidar-depth-camera-support-s

variant=39876752670807

15

https://hiwonder.hk/products/hiwonder-jethexa-ros-hexapod-robot-kit-powered-by-jetson-nano-with-lidar-depth-camera-support-slam-mapping-and-navigation?variant=39876752670807
https://hiwonder.hk/products/hiwonder-jethexa-ros-hexapod-robot-kit-powered-by-jetson-nano-with-lidar-depth-camera-support-slam-mapping-and-navigation?variant=39876752670807
https://hiwonder.hk/products/hiwonder-jethexa-ros-hexapod-robot-kit-powered-by-jetson-nano-with-lidar-depth-camera-support-slam-mapping-and-navigation?variant=39876752670807

A2

3D Depth Camera

3D Depth Camera Parameter

40mm |
25mm 2 Oo 25mm
o]

90mm |
3D technology ORBBEC binocular structured light Working range 0.3-3m
Accuracy Im: £6mm Field of View (FOV) H67.9° xV 45.3°
Field of View HT1°V 43.7° Depth processing chip MX6000
uvc support Close protection support
Resolution @ frame rate Resolution @ frame rate 1920x1080@30fps/
(depth mode) 640480 @30fps/ 320x240@30fps (RGB mode) 1280x720@7ps/ 640%480@30fps
Support operating system Android/ Linux/ Windows Working scene indoor and outdoor
Data interface USB2.0 Micro USB Size 90*25*25 mm
Power consumption <2W Operating temperature 10 - 40°C

Safety

Class1 laser

16

A.3 EAI G4 Lidar

o7l

EAl G4 Lidar Parameter

Laser launch receiving center

4l

~

3

Model
Recommended scene
Supply voltage
Scanning range
Measuring radius
Communication rate
Sampling rate

Scanning frequency

EAI G4 Lidar

indoor scanning and positioning
sV

360°

0.12 - 16m

230400bps

9%

5Hz - 12Hz

17

Angular resolution
Supply current
Pitch angle
Output interface

Operating temperature
Ranging accuracy

Size

0.28@7Hz
1000mA
0.25-1.75Deg
UART serial port
0-50C

2.0% (Im < distance < 8m)
2cm (distance < 1m)

72* 71 * 41mm

EEL 5683 Project 2 Report

Terrance Williams

March 31, 2023

Contents
1 Introduction

2 JetHexa Navigation
2.1 Localization e
2.2 Pathplanning o oo

3 Complete Navigation Process
31 Map Generation oL o
3.2 Navigation e
3.3 Note on Performance
3.4 JetHexa Navigation Summary.

4 Flowchart:Ros Launch Breakdown

5 Conclusion

1 Introduction

In Project 1, the JetHexa was tested for movement and basic peripheral function-
ality. A general sense of the platform’s performance was ascertained and the fun-
damentals of ROS were learned. Project 2 extended the work done in Project 1,
diving further into JetHexa’s numerous features by studying its navigation module
in aims of autonomous movement. Ultimately, the goal of Project 2 was to be able
to use the JetHexa’s navigation module to perform Simultaneous Localization and
Mapping (SLAM), model/display the map using software for the user’s viewing,
and move the robot to a user-specified point.

ST S

Figure 1: The JetHexa Robot

2 JetHexa Navigation

Hiwonder follows the See, Think, Act philosophy of autonomous motion. JetHexa
uses laser-based perception, wielding its EAI G4 Lidar to gather data on its environ-
ment. Specifically, the robot uses triangulation lidar [1], with a ranging frequency
of 9000Hz, a typical scanning frequency of 7Hz, and can scan in 360° [2]. Distance-
wise, the lidar can scan objects from 0.12m to 16m with a resolution of 0.28 at the
specified scanning frequency. Finally, in terms of error, the lidar has an absolute
error of 2cm when the ranging distance is less than one meter and a relative error
of 2.0% when the ranging distance is between one meter and eight meters. The
provided documentation does not specify the error for distances greater than eight
meters. In addition to these parameters, the documentation also provides infor-
mation such as wiring as well as the device’s method of communication, including
serial information such as baud rate and HIGH/LOW voltage ranges. After the per-
ception method is implemented, JetHexa performs localization and path-planning
during the Think portion of the cycle.

2.1 Localization

In this stage, the JetHexa localizes and produces a map using a user-specified
SLAM method. There are four map-making algorithms the user can use: Cartogra-
pher Mapping, Karto Mapping. Hector Mapping, and Gmapping. Each mapping
algorithm has its benefits and drawbacks based on use of odometry and laser scan-
ning, error mitigation, resource costs, etc. The Hiwonder tutorials utilize Gmap-
ping, so that algorithm is used in this project. However, testing the efficacy of
JetHexa’s navigation using the other three methods could be a worthwhile pursuit
for future work.

Gmapping is an algorithm developed by Grisetti, Stachniss, and Burgard that
is a modified Roa-Blackwellized particle filter (RBPF) [3]. Essentially, it is an RBPF
that also utilizes odometry and laser scanning to reduce the number of particles
needed to perform the operation, thereby saving a considerable amount of memory
and computation time [JetHexa 12.6]. This algorithm was used to have the JetHexa
map an office room (see Figure 2). Once a map is generated, it can be viewed by
the user using the program Rviz, a ROS package. Not many features of the room
may be seen in the map, but the robot was able to outline out the borders of the
room rather well. JetHexa also has the ability to save maps to its memory for future
use.

(b) Actual environment

Figure 2: Rviz representation of the Gmapping of the office room JetHexa is stored
in versus the room itself.

After generating a map, the JetHexa system can then perform its second localiza-
tion stage. To do this, it uses the Adaptive Monte-Carlo Localization ROS package
(amcl) which is a package that uses laser-based maps, scans, and transformations
to represent pose information, giving a probabilistic representation fo the robot’s
position [4]. With this package, the robot is able to perform an informed guess to
determine its location on the map. Once this localization is done, the path-planning
stage begins.

2.2 Path-planning

The idea behind the path planning for this application is that a user can specify
a desired point within the environmental map and have the robot move itself to
that position, avoiding obstacles and boundary collisions in the process. Hiwonder
provides the scripts needed to do this, so the user need only understand how to
operate it via mouse-click. However, for custom behavior, a user-provided method
of control could also be used. The path-planning itself is done through the ROS
Navigation Stack, a metapackage of multiple important ROS packages. Specifically,
the move_base package is utilized via global and local planners. Visually, the user
can specify the desired goal points and view the path taken in Rviz.

3 Complete Navigation Process

The previous section served as a baseline to understand the goal of the JetHexa
Navigation package. This section will detail the complete process of generating
autonomous motion with the robot’

3.1 JetHexa SLAM: Map Genesis [5]

To begin, the user connects to the robot’s WiFi network and remotes to the robot
using NoMachine. The first thing to do when attempting to run JetHexa’s navi-
gation package is to stop the JetHexa’s startup process. This is the process that
runs when by default whenever the machine is powered on and can interfere with
processes a user wants to run’ Run the following command to stop the program:

sudo systemctl stop jethexa_bringup.service

Next, the map of the robot’s working environment must be generated for future
use. Place the robot at a convenient starting point and run the JetHexa SLAM
package with Gmapping:

roslaunch jethexa_slam jethexa slam.launch slam_methods:=gmapping

This starts the mapping process. Indicators that the program is working success-
fully is a single beep followed by the JetHexa moving to its Reset/Home pose. The
Lidar will also begin to continuously rotate as it scans the room. To view the map,
launch Rviz:

roslaunch jethexa slam jethexa slam_rviz.launch

This will start Rviz under a specific configuration defined by HiWonder. At this
stage, the user can explore the robot-map accuracy by piloting the robot. Hiwonder
provides a keyboard control program to do this
(roslaunch jethexa_slam jethexa_keyboard_control.launch), but the user also has
the option to use the joystick controller. Controlling the robot manually at this
stage is useful to gain insight to how the robot’s motion affects its representation
on the map in Rviz.

Saving the map is next. This is done via the map_sever package. First, navigate
to the directory where JetHexa stores its maps:

roscd jethexa_ slam/maps

Now run map_server’s "map_saver" node.

1The author assumes the reader is able to properly remote into the robot using NoMachine.
2This was the cause of the performance issue initially seen in Project 1.

6

[Hewa, Ut 180400 115 =

at 11:22:54 0

RO Bapsed: 38,22 Wal Tmes 168263455775 Wall Elapsed: 3313 Expeimental

Ssan | Lef-Click: Rotane. Middle-Olck: Move 1, Sag! v, shift e

Figure 3: Rviz with options and parameters displayed.

rosrun map_server map_saver -f map_name map:=/jethexa/map
The map is now saved for future use. The SLAM process is complete and only

needs to be completed if a new maps needs to be generated.

3.2 JetHexa Navigation [6]

Now for navigation. If it hasn’t been done already, disable the startup program
using the command in the previous subsection. This prevents interference and
duplicate node name issues. To begin the navigation process, first load the map of
the environment:

roslaunch jethexa navigation jethexa load_map.launch map:=map_name
Next, launch the navigation program:
roslaunch jethexa navigation jethexa navigation.launch

Finally, after waiting for the navigation program to finish initialization, launch Rviz
under navigation configuration:

roslaunch jethexa navigation jethexa navigation_rviz.launch

With the completion of this step, the robot may now be given destination points.
The user can set these points one at a time using 2D Nav Goal or set multiple points
at once using Publish Point to create a route [7]. JetHexa will calculate the best route
to the goal point(s) and navigate there. In Figure 4, two examples of path planning
are shown. The red trajectory is the straight-line path from the JetHexa to the goal
point. The green trajectory is the planned path the robot calculates to reach this
trajectory. The latter trajectory is malleable and does change as the robot executes
its movement.

(a) View 1

(b) View 1

Figure 4: Views of JetHexa Navigation path planning.

3.3 Note on Performance

One thing to note regarding the autonomous navigation is that JetHexa currently
collides with obstacles when moving to its goal position. Static, pre-determined
points of collision are avoided, but when inserting an obstacle such as an empty
box into the robot’s movement path, it will collide with the object, pushing through
it to continue to its goal. In other words, the robot at this time can move to its goal
position, but may collide with undesired objects in the process. Improvements on
this performance will be pursued for Project 3.

3.4 JetHexa Navigation Summary

JetHexa utilizes many packages of the ROS Navigation Stack to achieve
autonomous navigation. In general, the process is to create and save a map of
the environment using Gmapping SLAM, load the map via map_server, launch the
navigation module, and control via Rviz inputs. A complete list of the commands
are presented below for the reader’s convenience:

Linux Commands
Before beginning either map generation or navigation, run the following:

sudo systemctl stop jethexa_bringup.service

Map Generation:

1. sudo systemctl stop jethexa_bringup.service

2. roslaunch jethexa_slam jethexa_slam.launch slam_methods:=gmapping

3. roslaunch jethexa_slam jethexa_slam_rviz.launch

4. roslaunch jethexa_slam jethexa_keyboard_control.launch

5. roscd jethexa_slam/maps

6. rosrun map_server map_saver f map_name map:=/jethexa/map
Navigation:

1. roslaunch jethexa_navigation jethexa_load_map.launch map:=map_name

2. roslaunch jethexa_navigation jethexa_navigation.launch

3. roslaunch jethexa_navigation jethexa_ navigation_rviz.launch

10

4 Flowchart:Ros Launch Breakdown

Along with the goal of using autonomous motion in the JetHexa platform, the other
goal for the project was to gain more knowledge and experience with the Robot
Operating System (ROS). One of the most prominent advantages of ROS is its
modularity; multiple packages and configurations may be run through the use of
Jaunch files, which are essentially XML-formatted files that specify what packages
and nodes to run and what values to pass to do so [8]. This allows users to combine
seemingly disparate ROS packages into a system that creates the desired outcome.

Hiwonder utilizes .launch files to coordinate the order of subsystem process
initializations. For this section, the jethexa_navigation.launch file will be analyzed to
understand the order of operations®.

The .lJaunch file begins by declaring multiple arguments (basically variables)
and sets them to default values. It then enters into launching the subsystems. First,
the URDF robot model is loaded. Next, the lidar is booted by finding and running
the relevant lidar .launch file. After the model is loaded and lidar initialized, the
motion controller is launched, with both the main controlling program and the
joystick control being used. This means the user will be able to control the robot
via software and/or manually via control stick. Finally, the last step in launching
the initial peripherals is to begin the lidar’s odometry simulation and integrate the
relevant filter.

After these files are launched, the file begins launching the material relevant
to navigation. First, an amc/ node is launched for localization purposes. Next
is the path-planning algorithm via the use of move_base. Finally, to enable multi-
point routing, the publish_point.py script is run, creating an additional ROS node.
This end of this step marks the conclusion of the jethexa navigation.launch file.
Other launch files such as the jethexa_slam.launch file can also be studied the same
way. A flowchart of the launch calls is displayed below in Figure 5, and the full
Jethexa_navigation.launch file is found appended to this report.

3This analysis assumes knowledge of the basic structure of .launch files which can be studied at
the following link: https://wiki.ros.org/roslaunch/XML

11

https://wiki.ros.org/roslaunch/XML

JetHexa Navigation Launch

Key
|:| Peripheral Setup

Maotion Control

Mavigation Stack

Argument URDF Lidar

Declaration Description

Odometer . _
. .
‘ Simulation Joystick Control | €———— Motion Control
Odometer
Filter Integration ’ AMCL

Move Base

l

Publish Point

Figure 5: General order of execution of jethexa_navigation.launch

12

5

Conclusion

In this report, the work for Project 2 was discussed, specifically the structure of
the JetHexa Navigation package and the entire process of autonomous motion
from SLAM map generation to point publishing. It was determined that while
the process itself was smoothly implemented, the JetHexa currently collides with
obstacles placed in its path mid-operation. The aim for Project 3 is to remedy this
behavior, allowing the JetHexa to avoid obstacles in real-time by adjusting its path

on-the-ly.

References

[1] Hiwonder, JetHexa Tutorials 12.1.2 - Basic Lidar Knowledge, Hiwonder.

[2] Hiwonder, JetHexa Tutorials 12.7.7 - Introduction to Lidar, Hiwonder.

[8] GMapping, https://openslam-org.github.io/gmapping.html, Accessed:
2023-03-30, OpenSLAM.

[4] Hiwonder, JetHexa Tutorials 12.2.7 - Adaptive Monte Carlo Localization, Hiwon-
der.

[5] Hiwonder, JetHexa Tutorials 12.1.6 - Gmapping Mapping Algorithm, Hiwonder.

[6] Hiwonder, JetHexa Tutorials 12.2.2 - Single-point Navigation and Obstacle Avoid-
ance, Hiwonder.

[71 Hiwonder, JetHexa Tutorials 12.2.3 - Multi-point Navigation and Obstacle Avoid-
ance, Hiwonder.

[8] roslaunch/ XML, https://wiki.ros.org/roslaunch/XML, Accessed: 2023-03-

30, Open Robotics.

13

https://openslam-org.github.io/gmapping.html
https://wiki.ros.org/roslaunch/XML

QO ~J o U WN

SR I I R I R e e e e e o e e g
Lo U WNERE OWWJO U™ WN - O W

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

<?xml ve
<launch>
<arg
<arg
<arg

<arg
<arg

<arg
<arg
<arg
<arg
<arg
<arg
<arg
<arg

<gro

rsion="1.0"?>

name="master name" default="$ (env MASTER NAME)"/>
name="robot_: name" default="$ (env ROBOT NAME)" />
name—"tf_preflx" default="$ (arg robot name)" />

name="map_topic" default="/$(arg master name) /map"/>
name="map_frame id" default="$ (arg master_name)/map"/>

name="use_depth camera" default="false"/>

name="scan_topic" default="scan/raw"/>

name="odom_topic" default="odom/filtered"/>

name="cmd vel topic" default="jethexa controller/cmd vel"/>
name—"odom frame id" default="$(arg tf_pref1x)/odom"/>
name—"base_frame_ld" default="§ (arg tf prefix)/base link"/>
name="move_base result" default="move base/result" />
name="clicked point" default="clicked point" />

up ns="$(arg robot_name) ">

<!-- URDF description of robot -->

<include file="$(find jethexa description)/launch/description.launch">
<arg name="robot name" value="$(arg robot name)" />
<arg name—"tf_preflx" value="$ (arg tf prefix)" />

</include>

<!-- Lidar -->
<include unless="$ (arg use_depth camera)" file="$ (find
jethexa peripherals)/launch/lidar.launch">
<arg name="tf prefix" value="$(arg tf prefix)" />
<arg name="scan_topic" value="$(arg scan_topic)" />
</include>

<!-- robot motion control -->
<include file="$(find jethexa controller)/launch/jethexa controller.launch">
<arg name="robot name" value="$(arg robot name)" />
<arg name="tf_pref1x" value="$ (arg tf prefix)" />
<arg name="tf enable" value="false" />
<arg name="odom_enable" value="false" />
</include>

<!-- handle control -->
<include file="$(find jethexa peripherals)/launch/joystick control.launch" />

<!-- posture sensor -->
<l--
<include file="$(find jethexa peripherals)/launch/imu.launch">
<arg name="tf prefix" value="$(arg tf prefix)" />
<arg name="freq" value="50" />
</include>
-—>

<!-- Lidar simulates odometer -->
<include file="$(find jethexa slam)/launch/include/rf2o0_ laser_ odometry.launch">
<arg name="scan_ topic" value="$(arg scan_topic)" />
<arg name="odom topic" value="odom/laser" />
<arg name="odom frame id" value="$ (arg odom frame id)" />
<arg name—"base frame id" value="§ (arg base frame id)" />
<arg name—"laser frame id" value="§ (arg tf_preflx)/laser link" />
</include>

<!-- odometer integrates filter -->

<include file="$(find jethexa_slam)/launch/include/jethexa ekf.launch">
<arg name="tf prefix" value="$(arg tf prefix)" />
<arg name="robot name" value="$(arg robot name)" />

</include>

<!-- start the AMCL Adaptive Monte Carlo Localization algorithm package -->

EELb5683 Project 3 Report

Terrance Williams

April 23, 2023

1 Introduction

For the past semester, the Hiwonder JetHexa robot has been used to explore its
range of features and performance capabilities. In Project 1, the hexapod’s motion
control, as well as its basic perception and navigation subsystems were tested,
utilizing the WonderAi app as well as the provided Bluetooth controller. Basic
movement, predefined action sequences, and the robot’s lidar system were the
subjects of study. In Project 2, tests transitioned to being conducted primarily
through the Robot Operating System (ROS) by way of remote desktop control
(NoMachine). SLAM mapping, localization, and navigation methods through the
JetHexa Navigation package were used to test the robot’s autonomous navigation.
During this testing, it was found that the robot would collide with obstacles placed
directly along its planned path; this behavior is the subject of Project 3.

The goal for Project 3 was to correct this behavior, enabling real-time obstacle
avoidance. This was done through additional layers in the robot’s global and local
costmaps.

2 Note on Path Trajectory

Before detailing the above, one question received as a result of Project 2 concerned
the trajectory the JetHexa robot takes to a provided goal point. It was observed that
the robot would take a curved path even in cases where straight paths seemed the
more efficient, which could prove to be problematic in terms of predicted behavior.

After investigation, an explanation for this behavior may lie in the way the robot
navigates itself. Upon map generation, a coordinate frame is saved, recording the
robot’s position and orientation at the time the map’s created. Upon moving to
a goal point, the robot not only aims to move to the (x,y) position of the goal

point, it does so while ending its central frame in an orientation parallel to the
map frame. If a goal point is provided that is a direct-line path ahead of the map
origin frame, the robot proceeds in a (mostly) straight trajectory, as seen below.
The trajectory is thinly plotted, but the green line is the straight-line trajectory and
the red line is the trajectory planned by the robot. Both are enclosed by the blue
curve. It can be seen that the two trajectories are pretty close to one another.

(c) Trajectories (circled in blue)

3 Cost Map Layers

JetHexa’s navigation package uses the ROS Navigation Stack to achieve its behav-
ior. In terms of path planning and execution, the package uses the move_base
package. This package relies on another package in the Navigation Stack,
costmap_2d [1]. If move_base is the means of executing a navigation plan,
costmap_2d provides the data for a plan to be formed.

According to the Package Summary, costmap_2d takes in sensor data as its
input—Ilaser scans in the case of this project—and constructs an occupancy grid
with inflated costs based on user-configured inflation radius [2]. The occupancy
map can be either 2D or 3D (voxel), but this project uses the 2D representation.
The package creates layered costmaps using three layer plugins: static layer, obsta-
cle layer, and the inflation layer. Each layer provides additional data that informs
the navigation task.

3.1 Static Layer

The static layer is the aptly-termed layer that utilizes unchanging data. This data
is sourced externally, typically through provision of a map [3]. This layer appears
to be the "base" layer onto which the other two layers add their data.

Figure 2: The static layer

3.2 Obstacle Layer

The obstacle layer [4] serves to mark and clear obstacles. Given sensory data (ex.
LaserScan), this layer identifies and tracks obstacles in the environment, marking
them by iinserting information to the costmap when they are within the scanning
range of the sensor and clearing them when outside that range by removing said
data. The latter operation is done via raytracing. When superimposed onto the
static layer, the obstacles are highlighted in two colors: red for the static layer and
magenta for the obstacle layer.

Figure 3: Rviz rep. with both static and obstacle layers enabled

3.3 Inflation Layer

The inflation layer is the layer that accounts for robot radius. The JetHexa does not
run a footprint model by default, so the navigation program assumes a point model.
Because the robot is represented as a point, the obstacles and other obstructions
must be inflated by values consistent with the robot’s actual dimensions to preclude
collisions.

This layer "sits” on top of the static and obstacle layers and categorizes costs
in the occupancy grid in five ways [5]. When a cell in the grid actually contains
the physical obstacle, the cell gets the "Lethal” cost, the highest cost value. If the
robot is in this cell, a collision has definitely occurred. Propagating out from this
cell is a circle of inscribed radius. Cells within this area are given the "Inscribed”
cost, which means that the robot will make a collision with certainty if its center is
in any of these cells.

Next is the "Possible circumscribed” cost. This cost is associated with cells
located within the circumscribed circle about the robot’s footprint but outside of

5

the more lethal cost areas. If the robot’s center is in these cells, it hasn’t necessarily
made a collision, but it may do so depending on the robot’s orientation. After
implementation of the three layers, most collisions observed were a result of cells
with this cost. Finally, the robot has "Freespace” and "Unknown" costs. The former
means the robot can traverse the cell with no problem. The latter’s interpretation

is user-discretionary.

cell cost

I range of costs meaning
definitely in collision

range of costs meaning
possibly in collision
(depends on orientation)

[inl]“
"lethal" or "W-space" obstacle
&.g. cost_lethal=254
"inscribed" or "C-space" obstacle
£.0. cost_inscribed=253 09,252
“circumscribed" obstacle
2.g. cost_possibly_circumscribed=128
a.12

naminal cost decay functisn

dissretived cost dec

ay function

range of costs meaning
definitely not in collision

alse the range where (most) user
preferences should be expressed

lowest non-freespace 1
cost=1 1
pace e —

cost=0 = I -
inseribed circumseribed inflation : distance from
radius radius radius | closest W-space
H obstacle cell
N— —_— _— [double]

=

canter
el

inseribed

ircumscribed regic:

buffer zone created by cost
obstacles, in order to make

map_2d around
the robot prefer

paths that keep some minimum clearance

(this is a sort of default us

|- waact inon-pixelized) footprint

er preference)

Figure 4: Open Robotics’ Inflation Layer Diagram [5]

Interestingly, the navigation program has inflation layer parameters for both
the global and local map. After performing tests, it was determined that they do
affect the map differently, but it is uncertain what the technical difference may be.
Visually, the global inflation layer consists of grayscale entries on the map while the
local layer is colored in teal (Inscribed cost) and purple (Possibly circumscribed

cost).

(c) Combined (all layers enabled)

Figure 5: Inflation Layer Types

3.4 Chart

A visual representation of the layers’ contribution to a cost representation of the
environment is displayed below.

Static Layer

I

Obstacle Layer

Global Complete
Representation

Local

I

Inflation Layer

Global

Local

(a) View 1

Complete Representation

Static Layer

Obstacle Layer

Inflation Layer

(b) View 2

Figure 6: The three costmap layers

4 Results

Enabling the additional map layers resulted a more robust obstacle avoidance by
the JetHexa. The robot is able to detect an object placed in its path and alter its
planned trajectory to navigate around it. One thing noticed, however, was the size
of the obstacles as a result of the inflation layer. Two obstacles that have space
between them may have a representation that does not capture this spacing. The
inflation layer applied to the two objects can result in the obstacles "overlapping”
on the map. This results in a loss of fidelity when compared to the physical envi-
ronment.

To account for this phenomenon, one could decrease the inflation radius pa-
rameters in the relevant costmap parameter files or relegate the use of the JetHexa
for more spacious environs, leading to more space to navigate around said objects.

(c) Size comparison for reference

Figure 7: Effect of the Inflation Layer

5 Future Work

The JetHexa has potential for many research applications in terms of traversability,
perception, localization, and a host of other topics. There are many features left to
explore such as the robot’s ability to communicate with other JetHexas, opening
the door for swarming or "battalion"-style behavior.

On the practical side, if possible, it may be beneficial to find a replacement bat-
tery with larger capacity to extend battery life/charge cycle. Currently, the robot’s
battery lasts about an hour before needed to be recharged, which prove cumber-
some when performing experiments and trials.

Overall, however, the platform is, quite frankly, fun to work with and provides
a great opportunity to work with advanced features.

References
[1] move_base, http://wiki.ros.org/move_base?distro=noetic, Accessed:
2023-04-20, Open Robotics.

[2] costmap_2d, http://wiki.ros.org/costmap_2d, Accessed: 2023-04-20, Open
Robotics.

[3] costmap_2d/ hydrol/ staticmap, http : //wiki . ros . org/costmap_2d/hydro/
staticmap, Accessed: 2023-04-20, Open Robotics.

[4] costmap_2d/ hydrol obstacles, http : / /wiki . ros . org/ costmap _2d / hydro /
obstacles, Accessed: 2023-04-20, Open Robotics.

[5] costmap_2d/ hydrolinflation, http : / /wiki . ros . org/ costmap _2d/hydro/
inflation, Accessed: 2023-04-20, Open Robotics.

10

http://wiki.ros.org/move_base?distro=noetic
http://wiki.ros.org/costmap_2d
http://wiki.ros.org/costmap_2d/hydro/staticmap
http://wiki.ros.org/costmap_2d/hydro/staticmap
http://wiki.ros.org/costmap_2d/hydro/obstacles
http://wiki.ros.org/costmap_2d/hydro/obstacles
http://wiki.ros.org/costmap_2d/hydro/inflation
http://wiki.ros.org/costmap_2d/hydro/inflation

	Project 1
	Introduction
	Hiwonder JetHexa ROS Hexapod Platform
	Anatomy and Hardware
	Movement
	Software Control
	Robot Control
	Robot Performance
	Lidar
	Gesture Control

	Wireless Control
	Programmatic Control

	Flow
	Summary
	Specifications
	JetHexa ROS Robot
	3D Depth Camera
	EAI G4 Lidar

	Project 2
	Introduction
	JetHexa Navigation
	Localization
	Path-planning

	Complete Navigation Process
	Map Generation
	Navigation
	Note on Performance
	JetHexa Navigation Summary

	Flowchart:Ros Launch Breakdown
	Conclusion

	Project 3
	Introduction
	Note on Path Trajectory
	Cost Map Layers
	Static Layer
	Obstacle Layer
	Inflation Layer
	Chart

	Results
	Future Work

