EEL6606 Project 1 Report

Terrance Williams

September 28, 2023

Contents

1

2

4

5

Introduction
CoDroneEDU Platform

Programmatic Interface

3.1 BasicMovement

3.2 Programming a Drone Context Manager
3.21 Creating a Context Manager
322 Testing o

33 UsingSensorData

Flowchart(s)

Conclusion/Future Work

A Code

12

1 Introduction

EELG6606 is a course that serves as an introduction to aerial robotics. In this course,
we learn the basics of Unmanned Aerial Vehicle (UAV) flight in terms of kinematics
and dynamics as well as the basics of autonomous flight such as perception, path-
planning, and flight controller programming. A project-based course, students are
expected to complete three projects that demonstrate principles covered in class.

For Project 1, Robolink’s CoDroneEDU platform was used to learn the basics
of interacting with a UAV system. The aim for this project was to work through the
reference materials provided by the company as well as perform basic movement
demonstrations to understand both how the drone performs and its capabilities for
custom applications.

2 CoDroneEDU Platform

The CoDroneEDU (also referred to as ‘codrone’) is an educational drone produced
by Robolink, an American robotics company. It’s a small UAV that fits in one hand,
but it has an array of sensors and features to assist aerial robotics education. As
seen by Figure 1, the codrone is a quad-rotor UAV meaning it’s designed to use four
propellers to achieve liftoff and perform subsequent piloting. The propellers are
arranged in a planar, square pattern; there are two colinear sets of propellers near
the front of the drone (red) and two towards the back (black). In the center of this
arrangement is a controllable LED unit that can be used to communicate status
updates to the human monitors. The system comes with two lithium-ion batteries
with each providing about seven to eight minutes of consecutive flight time.

The codrone is equipped with seven sensors that provide an variety of data
to the user. These sensors include: a color sensor, proximity sensors (front-range
and bottom range), optical flow sensors, an accelerometer, a gyroscope, and a
barometer for measuring pressure. The accelerometer is used to sense translational
acceleration. The color sensor is used to detect colors, specifically those included
on the provided color landing pads. The two proximity sensors are used to help
prevent collisions, with the front range sensor preventing head-on collisions and the
bottom range sensor keeping the drone at a certain relative height. Optical sensors
are used to sense relative position as the drone moves, and the gyroscope is used
to sense rotational movement such as change in heading/attitude. Additionally, the
drone can also provide information to the user such as internal temperature and
battery level. This information can be used to create conditionals in program, to be
discussed in a later section. The CoDroneEDU tutorials include more information
and tips on interacting with these sensors to create interesting applications.

Tmage Source: https://www.robolink.com/products/codrone-edu

2

https://www.robolink.com/products/codrone-edu

itk Cuams

Figure 1: CoDroneEDU Kit!

Finally, the codrone comes with a remote controller that serves both as the
controller for manual piloting and the connection point for programmatic control
via the "LINK" mode. The vast majority of the project was spent in this mode.

3 Programmatic Interface

The CoDroneEDU has two forms of software-based control in terms of languages.
The first, Blockly [1], is a visual programming language similar to MIT’s Scratch.
The user assembles programs using pre-defined blocks that fit together like puzzle
pieces. Programming the drone this way is useful because the user is able to visually
organize their program into functional blocks and connect sub-systems together to
derive more complex behaviors. It’s a great organization method for thinking and
program design.

The other programming interface for the codrone is programming using Python
[2]. While this method is not nearly as visual-based as Blockly, the programming
library provided by Robolink allows the user to control almost every aspect of the
drone including how it responds to button presses on the provided controller. So
in lieu of visual organization, the user receives much more fine-grained control of
the system, even allowing for system extension or modification if desired. Python

2Image Source: https://learn.robolink.com/lesson/1-6-1loops-junior-cde-blockly/

https://learn.robolink.com/lesson/1-6-loops-junior-cde-blockly/

repeat) times

@ ROBBOLINK

junior senior

CoDrone EDU blocks

L while -

do

Flight Commands
Flight Sequences
Status Checkers

countwith [from §J to E[) by

Lights

©O00®9O

Sounds

Programming blocks

Events for each item ([in list

Input/OQutput

Logic

of loop

Math

Timing

00000

Variables

Figure 2: Example of the Blockly language2

was chosen as the language for this project, and it is the language that will be used
for subsequent projects as well.

3.1 Basic Movement

In terms of movement, the codrone is omni-directional, a function of the robot’s
quad-rotor design. By modifying the rotation speed on any combination of the four
rotors, the UAV can move forward, backward, left, right, or diagonally. It can also
rotate left or right and adjust its hovering height. Movement commands have both
direction and power components. For example, to move the drone forward, one
sets the pitch parameter using the set_pitch() function. It accepts a value from 0 to
100 that represents the percentage of movement power. To change direction, the
number can be passed as a negative value. Positive values move the robot forward,
and negative values move it backward. A similar configuration is used for roll, yaw,
and throttle movements. However, these functions simply set the parameters; the
robot will not move until it’s told to, so the user must provide a call to move() and
pass in a movement duration value. Using these functions, the user can have to
drone fly in numerous shapes, including a square, triangle, sinusoid, spiral, and
many others.

The typical program flow suggested by Robolink is to do the following. First,
the user creates a Drone object in Python that is used to connect to the drone and
pass commands to it. Next, this Drone object connects the drone to the Python
program through the controller (which is "LINK" mode while plugged into the
computer via microUSB). Now, the drone will be able to execute commands sent
from the computer. From here, the user has the drone takeoff and hover in mid-
air; this step is necessary because other movement commands will not work if
the drone is grounded. The user can then send the robot through their desired
flight patterns and movements while the battery has enough power. Finally, the
user lands the drone with the land() command, and, in the most important step,
disconnects the drone-computer connection via the close) command. The last step is
emphasized multiple times throughout the tutorials; if it is not performed, then
the physical drone will still think it’s connected to the computer once the program
ends. On the next program run, the computer and the drone will not be able to
form a connection. If this happens, the drone can be manually reset (unplug the
battery and reconnect it). Of course, not having the problem in the first place is
preferred, especially since there are some scenarios where the drone may be too

high to reach.

3.2 Programming a Drone Context Manager

The pair/disconnect cycle is required for any Python program that controls the
codrone. One can easily imagine a scenario in which the disconnect portion is
neglected by mistake, leading to the problems discussed previously. Additionally,
if the program fails at some point before the close command, the program will
exit without performing the disconnect action, leading to the same problem. Part
of the project was used to create a more robust system for interacting with the
CoDroneEDU.

First, a try-except-finally model was used, whereby the entire program
script is wrapped by Python’s try block. If an error occurs (an exception is raised),
the program ’catches’ the exception and allows the user to handle it accordingly.
The purpose of the except block in this context is to allow the user to document
what went wrong. The most relevant part of the model, however, is the finally
clause. This clause executes whether an exception occurs or not. It is used for
clean-up actions in Python programs or to ensure some behavior occurs. Originally,
this clause was used to perform the necessary disconnect action. The program
structure looks like this:

try:

<Code commands that control the drone>
except Exception:

Caught an error

<perform actions>
finally :

<perform cleanup actions>

<disconnect drone>

While the above structure solved the drone connection problem when faced
with an execution error, there was still the possibility that the user could forget to
include the clause itself. Also, having complex program wrapped in such a block
seemed inelegant with respect to readability, so another method was pursued.

Python has a programming pattern called a context manager [3][4]. Context
managers are blocks that handle the setup and tear down aspects of programming
actions for the user. Essentially, they are reusable "try-except-finally” blocks. Tradi-
tionally, they are used to handle file operations because the structure automatically
handles closing the file for the user, an operation that, similar to the drone con-
nection, has undesired and sometimes dire consequences if forgotten. A context
manager is evoked using the with keyword:

with open(sample.txt) as f:
f.operationl
f.operation2

<file automatically closes here>

Once the program context leaves the with block, the clean-up actions occur.
What’s useful about this structure is the cleanup occurs whether the program was
successful or not; errors will still trigger the clean-up just ss it did with the finally
clause. This seemed to be the more elegant solution, so the next step was to
determine how to use a context manager with the codrone tooling.

3.2.1 Creating a Context Manager

Context managers have two parts that the programmer must include: __enter__
and __exit__ [5]. The former is responsible for setting up the desired context,
including returning a reference to an object the user desires to interact with within
the context (ex. the ’f” object in the earlier example). The latter defines the clean-
up actions and also handles exceptions. As long as these two methods are included
in the structure used in the with statement, a valid context manager is present.

To use the pattern with the CoDroneEDU Library, I extended the Drone class
to a new class, TDrone. This class inherits from the Drone class, meaning it has
access to all of the methods and attributes from Drone while also having additional
capabilities that the user desires. The TDrone class is the Drone class with the
addition of __enter__ and __exit__ as well as a modified __del__ method, the
method called upon garbage collection (when the object is fully deleted). In the
original class, this method would call close, but since that is now done within
__exit__, there is no need to do so a second time, so the new version:

——

def __del__ (self):
pass

simply passes in order for the garbage collection to occur. If desired, the user could
place a print statement instead that signals the object is about to be collected.

For the other modifications, the __enter__ method performs the pair action,
and the __exit__ method lands the drone and then closes the connection. It was
discovered that landing the drone first is important because otherwise the drone
remains suspended in the air if an error occurs. Landing the drone allows for a
consistent, controlled exit action.

To use the context manager, one writes the following:

with TDrone() as drone:
drone. takeoff ()
Other actions here

Exit the context
drome.__exit__ () is called, landing the drone
and closing the conmnection.

Now, the entire program can be written within the with context, or a program can
be written in an outside function and called within the context like so:

def main (drone):
drone.actionl
drone.action?2

drone.final action

with TDrone() as my_drone:
main (my_drone)

This keeps the code readable and automatically handles drone connection and
disconnecting actions, so the user will never forget to do so.

3.2.2 Testing

In order to test that the context manager works, I created a simulation of the
pairing/disconnect actions. I overwrote the relevant pairing and disconnecting
methods so that instead of performing the actions with the drone, the two methods
print messages to the screen. This was done in order to get ensure that the context
manager would work before adding complex Bluetooth connection to the system.
Once I was certain that the context manager would work as desired, the custom
pair and close methods were deleted, allowing the original implementations to
take their place. This testing method was viable due to the fact that my custom
drone class inherits from Robolink’s class, allowing access to all of the original
class’ infrastructure.

The next test focused on ensuring the context manager would work even when
the program has an error. To test, I purposefully introduced errors into the
system. In one test, the general Exception was manually raised while the pro-
gram was running, and in another test, a non-existing attribute was accessed (an
AttributeError). Both scenarios resulted in the desired behavior; the drone made
a controlled landing and disconnected from the Python program.

3.3 Using Sensor Data

With the addition of the context manager, the user can now focus more intensely
on the desired flight actions. One important aspect of planning such actions are
conditionals, programmed behaviors that occur only when some condition or set
of conditions is met. The CoDroneEDU Library provides numerous methods that
allow the user to access sensor data such as internal temperature, barometric pres-
sure, gyroscope data, etc. Any or all of these data points can be used to determine
the drone’s next move, leading to more complex behaviors.

As an example, one can use the codrone’s range sensors to ensure the drone
remains some distance away from a wall or maintains a minimum relative altitude.
Another example is battery-based LED color signal, where above, say, 75% the
drone LED is set to green, between 50 and 75% the LED is yellow, and below 50%
the LED is red. The user could write a program that periodically polls the battery
level and sets the LED color accordingly to provide a visual, qualitative indicator
of remaining battery life.

While the sensors included aren’t those one may find in more complex, long-
running systems, Robolink includes enough data variety that users can discover
creative, non-conventional uses. The tutorials, for example, use sensor data to
implement codrone-versions of common games such as "Red light, Green light" [6]
or color-based codrone pianos [7].

4 Flowchart(s)

Figure 3 depicts the basic system diagram for the CoDroneEDU setup. The drone
and the remote controller have a communication line through Bluetooth that allows
the remote to send commands to the drone and allows the drone to send sensor data
to the controller. The computer communicates with the controller via microUSB
and includes the aforementioned context manager code for ease of operation.

LINK

Remote Mode Computer
prLET=ERL > Controller » (Python)
‘with* _ enter__ __enter__
— i _)
Context Manager (Pair Drone) (Pair Drone)

_ exit_

Drone Commands ———» (Land+Disconnect)

Figure 3: System Diagram of CoDrone Environment

10

5 Conclusion/Future Work

For this project, the CoDroneEDU UAV platform was used to learn the basics of
practical aerial robotics. An alternate programmatic interface was developed and
used to remove cognitive load from the CoDrone program development process.
Additionally, basic movement parameters such as roll, pitch, yaw, and throttle
were modified to create various flight trajectory shapes, and the drone’s sensors
were used to develop conditional behavior for more complex actions.

In future projects, I aim to use the drone’s features in a creative, fun application
such as emulating a baseball game where upon receiving a numeric input, the drone
"runs” a set amount of bases. This would provide an interesting challenge because
various flight parameters will need to be used, and one could introduce complexity
by adding navigation rules based on "outs."

11

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Robolink, Blockly with CoDrone EDU, https://learn.robolink.com/course/
blockly-with-codrone-edu/, Accessed: 18 September 2023, Robolink.

Robolink, Python with CoDrone EDU, https://learn.robolink.com/course/
python-with-codrone-edu/, Accessed: 18 September 2023, Robolink.

Python Software Foundation, 3. Data model: With Statement Context Managers,
https://docs . python. org/3/reference/datamodel . html#context -
managers, Accessed: 19 September 2023, Python Software Foundation.

Python Software Foundation, &8 Compound statements: The with statement, https:
//docs .python.org/3/reference/compound_stmts.html#with, Accessed:
19 September 2023, Python Software Foundation.

L. P. Ramos, Context Managers and Python’s with Statement, https://realpython.
com/python-with-statement/#creating-custom-context-managers, Ac-
cessed: 19 September 2023, Real Python.

Robolink, 2.7: LED, https://learn.robolink.com/lesson/2-1-led-cde/,
Accessed: 3 September 2023, Robolink.

Robolink, 3.8: Color Classifier, https://learn.robolink.com/lesson/3-8-
color-classifier-cde/, Accessed: 6 September 2023, Robolink.

A Code

12

https://learn.robolink.com/course/blockly-with-codrone-edu/
https://learn.robolink.com/course/blockly-with-codrone-edu/
https://learn.robolink.com/course/python-with-codrone-edu/
https://learn.robolink.com/course/python-with-codrone-edu/
https://docs.python.org/3/reference/datamodel.html#context-managers
https://docs.python.org/3/reference/datamodel.html#context-managers
https://docs.python.org/3/reference/compound_stmts.html#with
https://docs.python.org/3/reference/compound_stmts.html#with
https://realpython.com/python-with-statement/#creating-custom-context-managers
https://realpython.com/python-with-statement/#creating-custom-context-managers
https://learn.robolink.com/lesson/2-1-led-cde/
https://learn.robolink.com/lesson/3-8-color-classifier-cde/
https://learn.robolink.com/lesson/3-8-color-classifier-cde/

File - C:\Users\Tj\PycharmProjects\codroneEDU\tjdrone.py

1 from codrone_edu.drone import Drone
2 import time

3

4

5 class TDrone(Drone):

6

7 def __init__(self, *xkwargs):

8 super().__init__(**kwargs)

9 # self.connected = self.isOpen()

10

11 def __enter__(self):

12 # Pair the drone

13 self.pair()

14 time.sleep(0.2)

15 return self

16

17 def __exit__(self, exc_type, exc_value, exc_tbh):
18 self.land()

19 self.set_drone_LED(255, 0, 0, 100)
20 # Shutdown Connection
21 self.close()
22 # print(f"Connected?: {self.connected}")
23
24 # Print Errors
25 if exc_value is not None:
26 print(exc_type, exc_value, exc_tb, sep='\

n')
27
28 o
29 Testing Context Manager via Overloads
30
31 def open(self, portname=None):
32 print("OPEN: Opened!")
33 self.connected = True
34
35 def close(self):
36 print("CLOSE: Closing CoDroneEDU
Connection.")

37 self.connected = False
38 o
39

Page 1 of 2

File - C:\Users\Tj\PycharmProjects\codroneEDU\tjdrone.py

40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

def

twice.

def

__del__(self):
Overload to prevent close from being called

print(f"TDrone: Deleting.")

fire_start(self):
self.takeoff()
self.hover()
ready = False
self.set_drone_LED(O, 0, 255, 100)
while not ready:
key = input("Press 's' to begin: ")
if key.lower() == 's':
print("Beginning Flight.")
ready = True
self.set_drone_LED(O, 255, 0, 100)
time.sleep(0.1)

Page 2 of 2

File - C:\Users\Tj\PycharmProjects\codroneEDU\1-FlightControl\basic_movements.py

1 from tjdrone import TDrone

2

3

4 def drone_movements(drone: TDrone):
5 # Parameters

6 pitch_power = 20

7 roll_power = 20

8 yaw_power = 50

9 throttle_power = 30
10
11 """Cycle through basic flight motions using the

CoDroneEDU"""

12 # Forward and Backward
13 drone.set_pitch(pitch_power)
14 drone.move(2)
15 drone.hover(2)
16 drone.set_pitch(-pitch_power)
17 drone.move(1.5)
18 drone.hover(2)
19
20 # Left and Right
21 drone.set_roll(roll_power)
22 drone.move(1.5)
23 drone.hover(2)
24 drone.set_roll(-roll_power)
25 drone.move(1.25)
26 drone.hover(2)
27
28 # Rotations
29 drone.set_yaw(yaw_power)
30 drone.move(2)
31 drone.set_yaw(0)
32 drone.hover(2)
33 drone.set_yaw(-yaw_power)
34 drone.move(2)
35 drone.hover(2)
36
37 # Vertical Movements
38 drone.set_throttle(-throttle_power)
39 drone.move(2)
40 drone.hover(2)

Page 1 of 2

File - C:\Users\Tj\PycharmProjects\codroneEDU\1-FlightControl\basic_movements.py

41 drone.set_throttle(throttle_power)
42 drone.move(1)

43 drone.hover(2)

44

45

46 if __name__ == "__main__":

47 with TDrone() as my_drone:

48

49 # Set parameter(s)

50 my_drone.set_trim(-5, 0)

51 my_drone.set_drone_LED(255, 0, 0, 100)
52

53 # Begin flight on key-press

54 my_drone.fire_start()

55

56 # Run Basic Movements

57 drone_movements(my_drone)

58

Page 2 of 2

File - C:\Users\Tj\PycharmProjects\codroneEDU\1-FlightControl\flight_patterns.py

1 from tjdrone import TDrone
2 import time

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

def exec_patterns(drone: TDrone):
patterns = [drone.square, drone.triangle,

drone.circle, drone.spiral,
drone.sway]

for func in patterns:

func}")

drone.set_drone_LED(255, 0, 0, 100)
ready = False
while not ready:
key = input("Press 's' to begin: ")
if key.lower() == 's':
print(f"Beginning Flight Pattern: {

drone.set_drone_LED(O, 255, 0, 100)
drone.takeoff()
drone.hover()
ready = True
time.sleep(0.1)
if func == drone.spiral:
func(speed=30, seconds=3)
else:
Default Parameters
func()
drone.land()
time.sleep(0.1)

if __name == "__main__":

with TDrone() as my_drone:

exec_patterns(my_drone)

Page 1 of 1

EEL6606 Project 2 Report

Terrance Williams

October 31, 2023

Contents

1

2

Introduction

Drone Baseball
2.1 Definition o e e e e e e e e e
2.2 Sensors Used e

Bases

3.1 What Constitutesa Base?
3.2 Arrangement
3.3 IdentifyingaBase

Performance Analysis
Flowchart

Conclusion

A Code

1 Introduction

In the first project for EEL6606, Robolink’s CoDrone EDU was examined, testing
its flight capability and sensor features. The project also resulted in the creation
of a new class to interface with the drone using a Python Context Manager for
improved runtime safety.

Projects 2 and 3 seek to use the tools and knowledge gained in Project 1 to
create an applicative use for the drone. Specifically, the aim is to create a means
of emulating base running in the game of baseball. The goal for this project is to
program the drone to detect a given base and navigate to the next one.

2 Drone Baseball

2.1 Definition

As previously mentioned, the purpose of the remaining two projects is to begin to
use the drone’s movement abilities and sensors to complete an objective, specifically
navigating four way-points or "bases” similarly to that in baseball. However, the
actual game of baseball has many complex rules and motions, so the objectives of
the project will be adjusted to a simplified version.

By the end of both projects, the drone should be able to identify and begin from
the Home base, receive an input for the number of bases to run based on ’hit’, and
round the bases accordingly, stopping whenever it reaches the Home base. There
is no assumption of stealing bases or traveling in the clockwise direction; the drone
must only navigate in the counter-clockwise base order, keeping track of the base
it currently occupies or moved from.

For Project 2 specifically, the drone traversing between two base structures is
considered a satisfactory result. The full four-base environment will be constructed
in Project 3.

2.2 Sensors Used

The detection of bases will ultimately use two of the CoDrone’s sensors. For de-
tecting the presence of a base, the drone’s bottom range sensor is used. To detect
the specific base the drone has landed on, color detection via the drone’s color
sensors will be used.

3 Bases

3.1 What Constitutes a Base?

For the purposes of this project, a base is a flat, wide region that has significant
elevation in comparison to the "floor” on which the bases sit. For example, if we
consider the floor of a room, elevated cardboard boxes or two square-shaped chairs
would provide enough elevation to serve as bases.

Because of the lack of robust localization on the CoDrone EDU, the drone
experiences noticeable uncertainty in its motion. As a result, objects with large
surface areas are necessary to use to provide the drone with a wide area to land.
The trade-off, however, is that takeoff points will be inconsistent, introducing the
possibility that the drone can miss another base when traversing the field.

3.2 Arrangement

Since the idea is to emulate a baseball game, the bases will ideally be in a diamond
formation. However, during testing it was determined that the results of diagonal
movement for the drone is not as predictable as square-like motions. Since this
project is solely concerned with ensuring the drone can identify a base, the bases
are assumed to be arranged in a rectangular formation, allowing for tests using
pure pitch or pure roll movements.

Second Base

First Base

e

ThirdBase | > Home Plate

Figure 1: Square Base Arrangement

3.3 Identifying a Base

In baseball, there are four bases: Home, First, Second, and Third. In order for the
drone to know what base to navigate to, it must first know what base it currently
occupies. To achieve this, the baseball program must keep track of the drone’s
current base. In the program, each base is represented numerically, with the First,
Second, and Third Bases all being assigned their respective numbers (1, 2, 3), and
the Home Plate assigned to 0. Function references used for this project may be
found in [1]

The program determines what move commands to send the drone based on
its current base. The following table lists the movement directions based on the
drone’s current base:

Current Base | Movement Direction
Home Forward
First Left
Second Down
Third Right

Table 1: Base-Movement Associations

For testing purposes, the base movement program takes in user input to de-
termine the drone’s current base, allowing for the two test bases to be shuffled
accordingly.

To actually detect a base, this project utilizes the drone’s bottom range sensor
to detect changes in relative height. The bases are elevated platforms such as
cardboard boxes that have a known height (ex. 20 cm). When the drone performs
its takeoff action to become airborne, it descends until it is within a relative height
range compared to the top of the base. Currently, this range is from 15cm to 20cm.
The program records this relative height and commands the drone to move in the
specified direction (see Table 1).

The drone then moves in the specified direction’ Once the drone leaves the
base, its bottom range sensor then detects the change in relative height from the
base to the floor. Because the difference in this change is so great, it is considered
a relative height switch. Upon crossing over another base, this switch will occur
again, allowing the program to determine that a base has been reached. Because
this method of detection can be sensitive to sensor values, a threshold is used to
filter for significant changes in relative height. This threshold is simply the height
of a base (20cm).

1The program assumes there is indeed another base in the target direction.

In other words, to detect a base the program first stores the bottom range sensor
reading when the drone is directly hovering over its current base. It continues to
poll the bottom range sensor, calculated the difference in relative height between
the stored reading and the most current. Once this difference exceeds the threshold
(i.e. the drone leaves the base), the first switch is recorded and this relative height
is stored as the value. The drone continues to move until it reaches another base,
at which point the second switch occurs. After two switches, the drone is then told
to land.

Ideally, the drone would then run color detection to ensure it has landed on the
proper base; this feature will be implemented in the next project.

4 Performance Analysis

In terms of performance, the program’s logic is sound. Upon prompt, the drone
will perform a takeoff from the base and slowly descend such that its relative height
is within the specified range. Upon reaching a new base, it lands as expected. It
also flies in the base-specific directions, taking stock of its current base and move
in the direction toward the next one.

The problem, however, comes as a result of the relatively unintelligent naviga-
tion algorithm. Because the drone flies in a specified direction until it reaches the
expected height change, if it happens to miss the base, it will continue to fly in said
direction, potentially landing on another object of similar elevation or even collid-
ing with an obstacle. Currently, there is no way for the drone to actively seek the
characteristics specific to a base compared to other elevated objects, nor is it able
to course-correct upon deviation because that would require foreknown knowledge
of the physical locations of the bases.

One approach attempted in order to correct this problem was the use of the
drone’s way-point-setting ability, storing the physical locations of the bases via a
calibration process. The drone, in theory, could then travel to the stored coordinate
value if no base is detected within a specified time. However, the results were
unpredictable; the drone would fly in unexpected directions during trials. More
research will have to be done in order to determine if this method could be viable.

Direction-wise, the drone performed perfectly, moving in the correct direction
toward the next base in all trials. For the next project, work will be done to first
confirm the performance still holds in the full-game setting and then subsequently
test performance for diagonal movements.

5 Flowchart

Included below in Figure 2 is the flow of the program for testing base navigation.

Call
Function from
Current Base

Y

| ok e | MR Duiemce
Relative to Base direction direction
¥
Update Current Base| Drone lands - HEi Svcl 2 Drone flies over a

variable on base E base

Figure 2: Base Navigation Program Flow

6 Conclusion

In this project, the performance objectives and environment for a "baseball" em-
ulation were defined. The CoDrone EDU was used to test base identification,
navigation, and overall program progression. For the next project, color detection
will be integrated with the system to perform targeted base identification, and the
motion patterns of the drone are to be adjusted to diagonal motions. Finally, the
full four-base system will be assembled for demonstration.

References

[1] CoDrone EDU Library Reference, Robolink, Aug. 2023. [Online]. Available: https:
//docs .robolink.com/docs/codrone-edu/python/reference/library/.

https://docs.robolink.com/docs/codrone-edu/python/reference/library/
https://docs.robolink.com/docs/codrone-edu/python/reference/library/

A Code

File - C:\Users\Tj\PycharmProjects\codroneEDU\2-Baseball\run_base.py

N 01T NN -

00 J

10
11

12

13

14
15
16
17
18
19
20
21
22

23
24
25

26
27
28
29
30
31
32

from tjdrone import TDrone
import time

%% Constants

PITCH_POWER, ROLL_POWER, THROTTLE_POWER = 15, 15, -25
power and directions: forward, right, and down

MOVE_TIME = 0.1

SLEEP_TIME = 1.5

SWITCH_DIST_THRESH: float = 20. # (cm); Relative

height difference that denotes a change from or to a

base.

BTMRANGE_SENSOR_UNIT = 'cm'

SWITCH_DIST_THRESH: float = 20. # (cm); Relative

height difference that denotes a change from or to a

base.

MIN_RELATIVE_HEIGHT, MAX_RELATIVE_HEIGHT = 15, 20

(cm)

HEIGHT_SWITCHES = 2 # Number of times relative

height must switch (i.e. exceed difference threshold)

%% Function Definitions

def move(current_base: int, drone: TDrone) -> int:
drone.set_drone_LED(255, 0, 255, 100)
"""Moves from current base to next base"""
dist_switch = 0

Ensure that the drone is on the proper current
base.

Movement logic. ASSUMES ONLY TRANSLATIONAL
MOVEMENT (for now).

HOME: Move forward to Base 1

Base 1: Move to the left to Base 2

Base 2: Move backward to Base 3

Base 3: Move to the right to HOME

drone.takeoff()

Page 1 of 3

File - C:\Users\Tj\PycharmProjects\codroneEDU\2-Baseball\run_base.py

33 drone.hover(SLEEP_TIME)

34 time.sleep(SLEEP_TIME)

35 drone.set_throttle (THROTTLE_POWER)

36 # Get initial bottom range value

37 curr_dist = 0

38 while not MIN_RELATIVE_HEIGHT < curr_dist <
MAX_RELATIVE_HEIGHT:

39 curr_dist = drone.get_bottom_range(unit=
BTMRANGE_SENSOR_UNIT)

40 drone.move (MOVE_TIME)

41 else:

42 # reset parameters

43 drone.hover(SLEEP_TIME)

44 # time.sleep(SLEEP_TIME)

45 # Set new movement params

46 if current_base == 0:

47 drone.set_pitch(PITCH_POWER)

48 drone.set_roll1(ROLL_POWER)

49 elif current_base == 1:

50 drone.set_pitch(PITCH_POWER)

51 drone.set_roll(-ROLL_POWER)

52 elif current_base == 2:

53 drone.set_pitch(-PITCH_POWER)

54 drone.set_roll(-ROLL_POWER)

55 elif current_base == 3:

56 drone.set_pitch(-PITCH_POWER)

57 drone.set_roll(ROLL_POWER)

58 else:

59 # If somehow the current_base is invalid.

60 raise ValueError(f"Invalid current base
value: {current_basel}")

61

62 # Move until the drone reaches another base (two
huge rel. height changes)

63 while dist_switch < HEIGHT_SWITCHES:

64 drone.move (MOVE_TIME)

65 # time.sleep(MOVE_TIME)

66 next_dist = drone.get_bottom_range(unit=
BTMRANGE_SENSOR_UNIT)

67 print(f'[move] Bottom-Range Reading: {

next_dist}')

Page 2 of 3

File - C:\Users\Tj\PycharmProjects\codroneEDU\2-Baseball\run_base.py

68 if abs(next_dist - curr_dist) >=
SWITCH_DIST_THRESH and curr_dist > 0:

69 dist_switch += 1

70 print(f'[move] Relative Height switch no
. {dist_switch} from {curr_dist} to {next_dist}')

71 curr_dist = next_dist

72 else:

73 print('Distance-switching trips met.')

74

75 # Land the drone

76 drone.hover (MOVE_TIME)

77 drone.land()

78 print("[INFO] Landing.")

79 while drone.get_bottom_range(unit=
BTMRANGE_SENSOR_UNIT) > 0O:

80 time.sleep(SLEEP_TIME/4)

81 else:

82 print("[move] Landed.")

83 time.sleep(SLEEP_TIME)

84 # Change LED Color

85 drone.set_drone_LED(O, 255, 0, 100)

86 return True

87

88

89 with TDrone() as my_drone:

90 done = False

91 while not done:

92 base = input('Insert a number: ').lower()

93 if base == 'q':

94 done = True

95 else:

96 # noinspection PyBroadException

97 try:

98 base = int(base)

99 except Exception:

100 print("Invalid entry.")

101 else:

102 assert move(base, my_drone)

103

Page 3 of 3

EEL6606 Project 3 Report

Terrance Williams

November 20, 2023

Contents

1

2

Introduction

Color-Based Identification
2.1 Base Construction o v v i v e e e

Multi-base Traversal

Waypoints
41 How CoDrone EDU Waypoints Work
4.2 Correcting the Navigation

Program Flow and Results

1 Introduction

This report details the work done for Project 3 of EEL6606 Aerial Robotics. Specif-
ically, it discusses the work continued from the previous projects. In Project 1, the
educational drone, CoDrone EDU' was demoed, leading to familiarity and com-
fort with using and programmatically interfacing with the platform. Project 2 saw
the beginning of the Drone Baseball project in which the goal is to have the drone
round four bases in a baseball-reminiscent way. At the end of Project 2, the drone
was able to identify when it has flown over a base and subsequently land on said
base.

There were problems with the drone behavior, however. The Codrone experi-
ences drift during takeoff, affecting its ability to sense the bases’ relative heights.
It also has inconsistent landings. In multiple runs, the drone will land on a variety
of areas on the base’s surface, thereby disturbing the trajectory for the next base
traversal. This project aims to remedy this behavior. The goals for Project 3 are to:

* Develop color-dependent base identification
* Implement multi-base traversal
* Correct the takeoff drift

 Correct inconsistent landings

2 Color-Based Identification

The first goal for the project was to develop a color-oriented base identification
method for the drone. To do so, the drone’s color sensing system was tested.
Initially, the aim was to have the drone hover over a given base and determine if
said base is the correct target. However, it was found through initial testing that the
Codrone’s color sensors do not work while airborne; the drone must be grounded
and stable for approximately 2 seconds for them to activate. This behavior means
each base must be landed on to verify its identity.

Once this was determined, the color detection training data was created by
following the company-provided tutorial [1]. Regarding physical implementation,
while the Codrone kit comes with colored pads to use, they were not large enough
to be used to cover the top surface of the base. Therefore, colored construction
paper was used as the color model source. This paper is then used to cover the
bases’ top surfaces.

After training the color model, the base colors were chosen. The following
mapping was chosen: Programmatically, this association is stored using a dictio-

L Also referred to as ’Codrone’ in this report

Color Base
Green | Home

Red First
Yellow | Second
Blue Third

Table 1: Color-to-Base Mapping

nary whose keys are the string names of the colors and whose values are both the
numeric mappings discussed in the Project 2 Report” and the RGB values of the
color (for visual LED changes). After landing on a base, the drone takes a color
sample from its two color sensors. If both sensors return the same color and said
color is a key in the dictionary, then the detected base number is returned and
checked against the target base value. If the two are equivalent, the move was
successful. Otherwise, an exception is raised. By incorporating color detection the
program can now verify if it is on the correct starting base upon beginning a move
and on the correct target base upon landing.

2.1 Base Construction

Each base is a 14in X 14in X 14in cardboard box whose top surface is covered
with colored construction paper of the relevant base color. The entire base area is
55in x 55in, leaving about 40in” of space between each base center when arranged
in a square pattern.

3 Multi-base Traversal

The next component of the project was the base traversal function. Rather than
create a considerably long function that checks many cases (target base vs. current
base), the movement function is split into two smaller functions. The first, move is
responsible for only moving the drone from the current base to the next base in
the arrangement. The second function, move_bases takes the drone’s current base
number and the amount of bases to traverse (based on user-provided hit type such
as single, double, triple, or home run) and determines how many times move is
called. This approach results in a more simplified method to achieve the desired
complex movement. When testing, the drone attempts to perform the moves as
expected, but the inconsistent takeoffs and landing result in movement error. As a
result, the project shifted to the final two goals of solving these inconsistencies.

2{0: Home, 1: First, 2: Second, 3: Third}
3This value accounts for variance in box tolerance.

4 Waypoints

The solution to the motion drift problem utilizes the Codrone’s ability to set and
navigate to waypoints. The aim was to set target points for each base and move to
said point once the drone realizes it has reached a base. Ideally, this method would
result in the drone being "pulled” toward the target base’s the center. Initially, the
program required the that user perform a calibration at the start of every game, a
procedure which proved tedious for testing. To remedy this, I instead only perform
calibration on the first ever run of the program, saving the waypoint values in a
JSON file and loading them upon subsequent runs. However, even that was opti-
mized, electing to define the waypoint values explicitly based on the arrangement
spacing and adjusting via trial and error.

41 How CoDrone EDU Waypoints Work

It is important at this point to discuss how the Codrone’s waypoints are imple-
mented and how it handles positioning in general. Initially, it was assumed that
waypoint navigation is based solely on relative positioning, where each waypoint is
simply the drone’s current position from takeoff. Initial tests supported this, storing
relative positions of each waypoint created from multiple takeoff points.

Later, it was discovered that while setting a waypoint is done solely from relative
positioning, moving to a waypoint is not. To assist debugging, the source code to
the Drone.set_waypoint, Drone.goto_waypoint, Drone.land, and Drone.get_position_data
functions were analyzed. From Drone.goto_waypoint, I learned that the drone keeps
track of its previous landing position. When this method is called for a given way-
point (created relatively), the displacement required to reach the drone is calculated
terms of absolute position from the drone’s first takeoff point. See the excerpt in
Figure 1 to see how the waypoint displacement is calculated in the code.

Figure 1: Excerpt from the goto_Waypoint method [2].

The result of defining the waypoint navigation as such is that all desired way-
points are to be defined before the drone’s first landing. This proved to be a problem
in this project’s use case because the drone has to land in on each base in order to
perform manual calibration and because each waypoint is defined relative to the
previous base.

In order to solve this problem, I added my own landing method to the TDrone
class created in Project 1. The method calls the company-provided landing method

and then resets the landing tracking variable to [0, 0]. As a result, each subsequent
flight assumes its takeoff point to be the origin, such that the displacement formulas
are effectively

data . positionX float () waypoint[0]) - self.get_position_data ()[1]
data.positionY = float () waypoint[1]) - self.get_position_data ()[2]

This method results in truly relative waypoint navigation. Additionally, because
the landing function is defined under a different name than the default method
(land_reset vs land), the original behavior is still accessible if desired.

4.2 Correcting the Navigation

As stated previously, waypoints are set relative to the drone’s takeoff position. This
allows the base centers to be defined as waypoints where each point is relative to
the base that came before it. So, the waypoint to First Base is defined relative to
Home, Second Base is defined relative to First, Third to Second, and Home to
Third. When the drone reaches the next base, the Drone.goto_waypoint function is
called for it, adjusting the drone’s position to the base’s center. Ideally, because
the drone lands in the same place upon every detection, the navigation from base
to base should be both more accurate and precise.

Similar reasoning is used to correct the takeoff drift. Because the drone’s land-
ing is now completely relative via the custom method, each takeoff point is its own
origin. Therefore, this origin can be passed as a waypoint upon takeoff. A new take-
off method, TDrone.relative_takeoff was defined, first calling the native Drone.takeoff
function and then passes the origin [0,0, 0] as a waypoint. The drone then navi-
gates to the original x, y values from its takeoff point*. The z value appears to be
ignored.

The result of these two operations are much more consistent base runs. The
drone now begins closer to the desired start point, and lands near the base center
much more frequently as desired.

5 Program Flow and Results

In summary, the flow of the program is as follows. First, the setup is done, loading
the color detection model, setting up a logger for output tracking, and loading the
predefined waypoints. Upon completion, the drone then uses its buzzer to play the
well-known baseball theme after which the program enters a while loop in which
it continuously awaits user input. The user inputs a hit value, and the program

“Rather, the drone navigates to a value close to the original point. In practice, there was a slight
drift to the right. At the time of writing, it is not known why this is the case.

5

calculates the number of bases to move. The drone is then commanded through the
movements where the aforementioned custom methods ensure the drone doesn’t
move too far from its starting and target points. Finally, should the user decide
to halt the game, the ’q’ character is entered, triggering garbage collection and a
successful exit. A visual representation of the program flow is depicted in Figure
2.

Regarding efficacy, though the program has shown considerable performance
improvements compared to Project 2, the drone still has trouble with consistency.
For example, the drone is able to perform perfectly when moving from one base
to the next, regardless of its starting base. However, when called in succession,
the drone performs unexpected movements such as unprompted descents or early
landings. The program logic and flow has been reviewed multiple times to deter-
mine if this behavior is a result of a programming error. It is possible that there
are unknown factors in the drone’s operation that have not been taken into consid-
eration such as communication error via the Bluetooth module; it is uncertain at
this stage.

h 4
s

LTy -
Game Setup Get User Input }—) Move the Drone ———» Verify Base
S — B —

Received Quit
Signal

Exit

‘ Initialize Logger }—){ Load Color Model }—){ Load Waypoints

e

Ly S S
. Perform Validity Determine number of

‘ SETELITT 3 Check bases to traverse i‘

B Ne e . ./

Verify drone is on the Determine Takeoff, Hover above
input base movement direction current base

Once detected flyto o | yioveto next base

waypoint
Perform Color Compare detected
Detection on Base ———>» colortocolor —————» Comectbase? ——————» ;dut::vcee-r;,:frltl
Surface mappings

Raise Exception

Figure 2: Flowchart for t7he Drone Baseball game

References

[1] 3.8 Color Classifier, Robolink, Sep. 2023. [Online]. Available: https://learn.
robolink.com/lesson/3-8-color-classifier-cde/.

[2] codrone-edu 1.9, Robolink, Aug. 2023. [Online]. Available: https://pypi.org/
project/codrone-edu/.

Code

https://learn.robolink.com/lesson/3-8-color-classifier-cde/
https://learn.robolink.com/lesson/3-8-color-classifier-cde/
https://pypi.org/project/codrone-edu/
https://pypi.org/project/codrone-edu/

File - C:\Users\Tj\Documents\GradSchool\2023_Fall\EEL6606-AerialRobotics\projects\codroneEDU\2-Baseball\baseball_game.py

1
2
3
4
S
6

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26

27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#!/usr/bin/env python3
-%- coding: utf-8 -*-

"""haseball_game:

A Series of functions to assist with the development of a drone
baseball
emulation program.

@author: Terrance Williams

noinspection PyUnresolvedReferences
import time

import logging

import json

from pathlib import Path

from codrone_edu.drone import *

from tjdrone import TDrone

%% CONSTANTS

PITCH_POWER, ROLL_POWER, THROTTLE_POWER = 20, 30, -25 # power
and directions: forward, right, and down

MOVE_VELOCITY = 0.5 # (m/s) MAX: 2.0 m/s

MOVE_TIME = 0.1

SLEEP_TIME = 1.5

COLOR_DETECT_THRESH = 50

SWITCH_DIST_THRESH: float = 22. # (cm); Relative height
difference that denotes a change from or to a base.
MIN_RELATIVE_HEIGHT, MAX_RELATIVE_HEIGHT = 20, 35 # (cm)
HEIGHT_SWITCHES = 2 # Number of times relative height must
switch (i.e. exceed difference threshold)

TOTAL_BASES: int = 4

BTMRANGE_SENSOR_UNIT = 'cm'

COLOR_DETECT_ATTEMPTS = 50

Notes

C4 = Note.C4
E4 = Note.E4
G4 = Note.G4
CS = Note.C5

REST = Note.Mute
NOTE_DURATION = 250 # (ms) 6/8 time at 120 BPM

%% Mappings
HOME = 0O
BASE_1 = 1

Page 1 of 10

File - C:\Users\Tj\Documents\GradSchool\2023_Fall\EEL6606-AerialRobotics\projects\codroneEDU\2-Baseball\baseball_game.py

44 BASE_2 = 2

45 BASE_3 = 3

46 # Base Color mapping [color: (base_num, color_rgb)]
47 base_color_mappings = {

48 'green': (HOME, (@, 255, 0)),
49 'red': (BASE_1, (255, 0, 0)),
50 'vellow': (BASE_2, (255, 255, 0)),
51 "blue': (BASE_3, (0, 0, 255))
52 }

53 base_number_mappings = {

94 HOME: 'Home',

55 BASE_1: 'First',

56 BASE_2: 'Second',

57 BASE_3: 'Third'

58 }

59 hit_mappings = {

60 'miss': 0O,

61 'single': 1,

62 'double': 2,

63 "triple': 3,

64 "home run': 4

65 }

66 base_waypoints = {}

67

68 # %% Logging

69 log_path = Path() / 'logs'

70 if not log_path.exists():

71 log_path.mkdir()

72

73 log_index = len([x for x in log_path.iterdir()])

74 logfile = log_path / f'baseball_{log_index:02d}.log’

75 logging.basicConfig(filename=1logfile, encoding='utf-8', level=
logging.DEBUG)

76

77

78 # %% Functions

79 def low_hover(

80 drone: TDrone,

81 min_height=MIN_RELATIVE_HEIGHT,

82 max_height=MAX_RELATIVE_HEIGHT) -> float:

83 """Hover the drone within some relative height range"""
84 drone.relative_takeoff()

85 drone.hover(SLEEP_TIME)

86 drone.set_throttle(THROTTLE_POWER)

87

88 curr_dist = 0

89 while not min_height < curr_dist < max_height:

Page 2 of 10

File - C:\Users\Tj\Documents\GradSchool\2023_Fall\EEL6606-AerialRobotics\projects\codroneEDU\2-Baseball\baseball_game.py

90
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127
128
129
130

131

drone.move (MOVE_TIME)
curr_dist = drone.get_bottom_range(unit=
BTMRANGE_SENSOR_UNIT)

if curr_dist < min_height:
drone.set_throttle(-THROTTLE_POWER)

elif curr_dist > max_height:
drone.set_throttle(THROTTLE_POWER)

time.sleep(0.01)

else:
drone.hover(SLEEP_TIME)
return curr_dist

noinspection PyPep8Naming

def calibrate_bases(drone: TDrone) -> dict:
this_func = 'calibrate_bases'
noinspection PyUnusedLocal
color_path = Path('../color_data')

Load color classifier
if not color_path.is_dir():
print("Could not find color_data directory. Using
defaults")
drone.load_classifier()
else:
drone.load_classifier(dataset=color_path)
Check if there are pre-configured waypoints
way_path = Path('waypoints/saved_waypoints.json')
if not way_path.parent.is_dir():
way_path.parent.mkdir()
if way_path.is_file():
with open(way_path, 'r') as f:
waypoints = json.load(f)
print(waypoints)
else:
"""Sets waypoints for each base if unable to load"""
waypoints = {}

Set the waypoint to the next base beginning from
HOME
for i in range(TOTAL_BASES):
_ = input('Press Enter to continue: ')
base_to_calibrate = (i + 1) % TOTAL_BASES
logging.info(f'<{this_func}> Calibrating Base {
base_number_mappings[base_to_calibrate]} from Base {i}')
print(f'<{this_func}> Place Drone on f{
base_number_mappings[i]} Base.')

Page 3 of 10

File - C:\Users\Tj\Documents\GradSchool\2023_Fall\EEL6606-AerialRobotics\projects\codroneEDU\2-Baseball\baseball_game.py

132

133 consec_detect = 0

134 while consec_detect < COLOR_DETECT_THRESH:

135 color = drone.predict_colors(drone.
get_color_data())

136 # print(color)

137 frnt_clr, back_clr = color

138 if frnt_clr == back_clr and frnt_clr in
base_color_mappings:

139 current_base, LED_color =
base_color_mappings[frnt_clr]

140 drone.set_drone_LED(*LED_color, 100)

141 if current_base == i:

142 consec_detect += 1

143 print(f'{COLOR_DETECT_THRESH -
consec_detect}',

144 end=" ")

145 else:

146 print('\r', end="")

147 consec_detect = 0

148 else:

149 print('\r', end="")

150 consec_detect = 0

151 else:

152 # Add waypoint to mapping dict

153 print((

154 f"<this_func>: Pilot the drone to Base {
base_to_calibrate}"

155 " and then input the requested key.")

156)

157 drone.fire_start()

158 drone.set_waypoint()

159 drone.land_reset()

160 waypoints[base_to_calibrate] = drone.
waypoint_data[i]

161 print(f'Waypoints:\n"')

162 for waypoint in waypoints.values():

163 print(waypoint)

164 print('")

165 # time.sleep(SLEEP_TIME)

166 else:

167 # Write waypoints to file

168 with open(way_path, 'w') as f:

169 json.dump(waypoints, f)

170 return waypoints

171

172

Page 4 of 10

File - C:\Users\Tj\Documents\GradSchool\2023_Fall\EEL6606-AerialRobotics\projects\codroneEDU\2-Baseball\baseball_game.py

173 def await_input(drone: TDrone) -> None:

174
175
176
177
178
179
180
181
182
183
184
185

186

187
188

189
190

191

192
193
194

195
196
197
198
199
200

201
202

203

204
205

206
207
208

quit_signal = 'q'
done = False
current_base = HOME

while not done:

input_val = input("Insert a Hit Value: ").lower()

if input_val == quit_signal:
print("[INFO] EXITING program.")
done = True

elif input_val in hit_mappings:
num = hit_mappings[input_val]
current_base = move_bases(current_base, num, drone

elif input_val in [str(i) for i in range(TOTAL_BASES

+ 1)]:

num = int(input_val)
current_base = move_bases(current_base, num, drone

else:
print("Insert a hit value (miss, single, double,

triple, or home run) or",

" the number of bases to run (0 to 4).\n", "

Enter 'q' to quit.\n", sep='"')

def move_bases(current_base: int, num_bases: int, drone:
TDrone):

"""Pepforms a series of base movements"""
this_func = 'move_bases'
Input checks
try:
if current_base < HOME or num_bases < 0:
raise ValueError("Current Base and number of bases

to run must be non-negative.")

if current_base > BASE_3:
logging.critical(f'Input base {current_base} is

outside bounds.')

raise ValueError("Current Base is limited from 0O

to 3 (inclusive).")

except TypeError:
print("Current Base and number of bases to run must be

integers.")

raise
Ensure integer inputs (floors any non-int value)
current_base, num_bases = int(current_base), int(num_bases

Page 5 of 10

File - C:\Users\Tj\Documents\GradSchool\2023_Fall\EEL6606-AerialRobotics\projects\codroneEDU\2-Baseball\baseball_game.py

209

210 # Trivial condition

211 if num_bases ==

212 print(f"<{this_func}> Drone does not move.")

213 logging.info(f"<{this_func}> Drone doesn't move.")

214 return current_base

215

216 # Check if provided number of bases to run result in a
full run (back to HOME).

217 if current_base + num_bases >= TOTAL_BASES:

218 num_bases = TOTAL_BASES - current_base

219

220 print(f'<{this_func}> (Current Base, Target Base): ({
current_base},

221 f'{(current_base + num_bases) % TOTAL_BASES})"')

222 logging.info(f'<{this_func}> (Current Base, Target Base
): ({current_base}, '

223 f'{(current_base + num_bases) % TOTAL_BASES}
)")

224 # Move to the bases

225 for _ in range(num_bases, 0, -1):

226 current_base = move(current_base, drone)

227 time.sleep(SLEEP_TIME/6)

228 else:

229 return current_base

230

231

232 # noinspection PyPep8Naming
233 def move(current_base: int, drone: TDrone) -> int:
234 this_func = 'move'

235 """Moves from current base to next base"""

236

237 # Ensure that the drone is on the proper current base.

238 for _ in range(COLOR_DETECT_ATTEMPTS):

239 test_color = drone.predict_colors(drone.get_color_data
0)

240 if test_color[0] == test_color[1]:

241 test_base, _ = base_color_mappings[test_color[0]]

242 if test_base == current_base:

243 break

244 else:

245 raise ValueError("Could not verify the drone's current
base.")

246

247 target_base = (current_base + 1) % TOTAL_BASES

248 logging.info(f'<{this_func}> Moving from {current_base} to

{target_base}')

Page 6 of 10

File - C:\Users\Tj\Documents\GradSchool\2023_Fall\EEL6606-AerialRobotics\projects\codroneEDU\2-Baseball\baseball_game.py

249

250
251
252

253
254
255
256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

277
278

279
280
281
282
283
284

285

286

287

print(f'<{this_func}> Moving from {current_base} to {
target_base}')

curr_dist = low_hover(drone)
logging.debug(f'<{this_func}> Initial Bottom Range Value {
BTMRANGE_SENSOR_UNIT}: {curr_dist}"')

Set new movement params
Movement logic. ASSUMES ONLY TRANSLATIONAL MOVEMENT (for
now) .

HOME: move forward to Base 1

Base 1: Move left to Base 2

Base 2: Move backwards to Base 3

Base 3: Move right to HOME

if current_base == HOME:
drone.set_pitch(PITCH_POWER)
drone.set_roll1(ROLL_POWER)

elif current_base == BASE_1:
drone.set_pitch(PITCH_POWER)
drone.set_roll(-ROLL_POWER)

elif current_base == BASE_2:
drone.set_pitch(-PITCH_POWER)
drone.set_roll1(-ROLL_POWER)

elif current_base == BASE_3:
drone.set_pitch(-PITCH_POWER)
drone.set_roll1(ROLL_POWER)

else:
If somehow the current_base is invalid.
raise ValueError(f"Invalid current base value: {

current_base}")

Move until the drone reaches another base (two
substantial
changes in relative height)
dist_switch = 0
while dist_switch < HEIGHT_SWITCHES:
drone.move (MOVE_TIME)
time.sleep(MOVE_TIME)
next_dist = drone.get_bottom_range(unit=
BTMRANGE_SENSOR_UNIT)
logging.debug(f'<{this_func}> Bottom-Range Reading: {
next_dist}"')
print(f'<{this_func}> Bottom-Range Reading: {
next_dist}')
if (abs(next_dist - curr_dist) >= SWITCH_DIST_THRESH

Page 7 of 10

File - C:\Users\Tj\Documents\GradSchool\2023_Fall\EEL6606-AerialRobotics\projects\codroneEDU\2-Baseball\baseball_game.py

287
288
289
290

291

292
293
294

295
296
297
298
299
300

301

302
303
304

305
306
307
308
309

310
311

312
313
314

315

316
317
318
319
320

and
(curr_dist > 0 and (0 < next_dist < 900))):
dist_switch += 1
logging.info(f'<{this_func}> Relative Height

switch no. {dist_switch} from {curr_dist} to {next_dist}')
print(f'<{this_func}> Relative Height switch no. {
dist_switch} from {curr_dist} to {next_dist}')

curr_dist = next_dist

else:

logging.info(f'<{this_func}> Distance-switching trips

met.')

print('Distance-switching trips met.')
Adjust Position; ensure landing
drone.hover(MOVE_TIME)
print("[INFO] Adjusting position...")
logging.debug(f'{this_func}: Going to waypoint {

base_waypoints[str(target_base)]}')
drone.goto_waypoint(base_waypoints[str(target_base)],
MOVE_VELOCITY)

drone.hover(1)
drone.land_reset()
while drone.get_bottom_range(unit=BTMRANGE_SENSOR_UNIT) >
0:
time.sleep(SLEEP_TIME/4)
Detect Base based on color
for i in range(COLOR_DETECT_ATTEMPTS):
colors_detected = drone.predict_colors(drone.

get_color_data())
if colors_detected[0] !'= colors_detected[1]:
logging.debug(f"<{this_func}> Color-Detection {i}
: Color values differ {colors_detected}.")
continue
if colors_detected[0] in base_color_mappings:
current_base, LED_color = base_color_mappings[
colors_detected[0]]
logging.info(f'<{this_func}> Detected {
colors_detected[0].upper()} associated with Base {current_base
)
break
time.sleep(SLEEP_TIME/10)
else:
noinspection PyUnboundLocalVariable
logging.critical(f"<{this_func}> Detected color {
colors_detected} is not one of the colors assoc. with a base."

)

Page 8 of 10

File - C:\Users\Tj\Documents\GradSchool\2023_Fall\EEL6606-AerialRobotics\projects\codroneEDU\2-Baseball\baseball_game.py

321 drone.set_drone_LED(O, 0, 0, 0)

322 raise ValueError(f"<{this_func}> Detected color {
colors_detected} is not one of the colors assoc. with a base."
)

323

324 # Change LED Color

325 if current_base != target_base:

326 drone.set_drone_LED(O, 0, 0, 0)

327 logging.critical('Drone landed on incorrect base.')

328 raise ValueError('[ERROR]: Drone landed on incorrect
base.')

329 else:

330 drone.set_drone_LED(*LED_color, 100)

331 logging.info(f"<{this_func}> Success.")

332 print(f"<{this_func}> Success.")

333 return current_base

334

335

336 def play_song(drone: TDrone):

337 drone.drone_buzzer(C4, NOTE_DURATION)

338 drone.drone_buzzer(E4, NOTE_DURATION)

339 drone.drone_buzzer (G4, NOTE_DURATION)

340 drone.drone_buzzer(C5, NOTE_DURATION // 2)

341 drone.drone_buzzer(REST, NOTE_DURATION)

342 drone.drone_buzzer (G4, NOTE_DURATION)

343 drone.drone_buzzer(C5, 3 * NOTE_DURATION)

344

345

346 def play_ball(drone: TDrone):

347

348 i

349 Perform any required drone setup.

350 Waits until drone is on the HOME plate, plays the start
song, and then

351 awaits user input

352 i

353 global base_waypoints

354

355 # Print base-color associations

356 message = ("Welcome to Drone Baseball!\nBefore we begin,
let's calibrate"

357 " the bases.\nHere are the current color
associations:")

358 print(message)

359 logging.info("Current Base-Color Associations")

360 for color in base_color_mappings:

361 base_num = base_color_mappings[color][0]

Page 9 of 10

File - C:\Users\Tj\Documents\GradSchool\2023_Fall\EEL6606-AerialRobotics\projects\codroneEDU\2-Baseball\baseball_game.py

362 assoc_base = base_number_mappings[base_num]
363 print(f'{color.title()}:\t{assoc_base}"')
364 logging.info(f'{color.title()}:\t{assoc_base}')
365

366 base_waypoints = calibrate_bases(drone)

367 print(f'Check waypoints: {base_waypoints}"')
368 # Play Baseball Song

369 play_song(drone)

370 print("\nPlay Ball!\n")

371 time.sleep(SLEEP_TIME)

372

373 for key in base_waypoints:

374 print(base_waypoints[key])

375 await_input(drone)

376

377 logging.info("User Exit.")

378

379

380 if __name__ == '__main__":

381 # logging.getlLogger().setlLevel(logging.INFO0)
382 with TDrone() as t_drone:

383 t_drone.set_drone_LED(255, 255, 255, 100)
384 t_drone.reset_trim()

385 play_ball(t_drone)

386

Page 10 of 10

	Project 1
	Introduction
	CoDroneEDU Platform
	Programmatic Interface
	Basic Movement
	Programming a Drone Context Manager
	Creating a Context Manager
	Testing

	Using Sensor Data

	Flowchart(s)
	Conclusion/Future Work
	Code

	Project 2
	Introduction
	Drone Baseball
	Definition
	Sensors Used

	Bases
	What Constitutes a Base?
	Arrangement
	Identifying a Base

	Performance Analysis
	Flowchart
	Conclusion
	Code

	Project 3
	Introduction
	Color-Based Identification
	Base Construction

	Multi-base Traversal
	Waypoints
	How CoDrone EDU Waypoints Work
	Correcting the Navigation

	Program Flow and Results

