
EML 6805 Project 1 Report

Terrance Williams

September 30, 2022

Abstract

A report detailing the specifications, assembly, and testing of the Lynxmo-

tion 3 DoF Robot Arm.
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2 PLATFORM SPECIFICATIONS

1 Introduction

EML 6805 is a project-based, graduate level engineering course concerning the
fundamentals of robotics. For the first project assignment, the Lynxmotion 3 De-
grees of Freedom (DoF) Robot Arm was assembled. Upon completion, tests on the
robot’s range of motion were conducted in order to both characterize the driving
actuators and ensure the expected functionality.

2 Platform Speci�cations

The Lynxmotion robot platform utilized in this project is a 3 DoF robot consisting
of three revolute actuating joints. The actuators are Lynxmotion Smart Servo mo-
tors (LSS) as well as one mini RC servo to control the arm’s gripper. The robot
links connected to servo 2 form a four-bar linkage system, giving the the robot
a bit more complex geometry than a serial bot. The default coordinate system
used to represent the position of the end-e�ector is the Cartesian system, though
cylindrical may be utilized instead [1].

Figure 1: Lynxmotion 3DoF Arm Model1

1Image Source: https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/servo-erector-set-
robots-kits/ses-v2-robots/ses-v2-arms/lss-3-dof-arm/WebHome/LSS-3DOF-ISO.PNG
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3 ASSEMBLY

The robot has a (theoretical) max horizontal reach of 15" and a max vertical reach
of 8.25". The mini gripper is able to open to 34mm and its driving servo has a
torque rating of 1.5kg cm, and each LSS motor has a torque rating of 14kg cm. The
theoretical working envelope is shown below, but for purposes of this project and
the following projects, the envelope’s lower-bound will be constrained vertically to
be parallel with the base. [2]

Figure 2: Theoretical Working Envelope of the Lynxmotion 3DoF Robot Arm2

3 Assembly

To assemble the Lynxmotion platform, the Quick Assembly Guide on the Lynx-
motion Wiki was utilized [3]. The guide segments the assembly process into six
steps: servo setup, the base, link preparation and assembly, the mini gripper, final
assembly, and wiring. Following this visual guide rendered what would have been
a complex assembly relatively simple.

2Image Source: https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/servo-erector-
set-robots-kits/ses-v2-robots/ses-v2-arms/lss-3-dof-arm/WebHome/LSS-3DOF-DIMENSIONS-
Envelope.PNG
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3.1 Servo Setup 3 ASSEMBLY

3.1 Servo Setup

For the servo setup, I first updated the firmware of each of the servos using LSS
Config software and used this same software to assign each servo motor its own
ID (1 through 3). The purpose of assigning each servo its unique ID is to facilitate
communication with specific servos when desired by the user. After this, I removed
the idler horns on each of the motors (as well as the driving horn from motor 1)
and added mounting brackets on servos 2 and 3.

Figure 3: The three servos after the setup phase.
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3.2 Base 3 ASSEMBLY

3.2 Base

The second step of this assembly was assembling the base of the robot arm. I
attached the base platform to the spindle of motor 1, mounted the 5V regulator
unit and the 2IO board, and connected the rotating base as well as the supports
to the assembly.

Figure 4: Base of the Robot

3.3 Link Assembly

The link assembly was perhaps the most involved step of the assembly as one had
to be mindful of the precise orientation of the links in order to produce the proper
motion between rotary joints. This step also introduced the first sticking point in
the assembly. The provided lock nuts used to connect and secure the links did not
thread far enough along the screws used in this step. This meant that the screws
had freedom to move within the assembly, allowing two planar links to become mis-
aligned, thereby introducing complexity within the degrees of freedom that could
have negatively a�ected the kinematics calculations for movement.

To remedy this, additional washers were introduced along length of the exposed
screw. By doing this, the lock nuts were able to apply force on the washers which
was then transferred to the links, thereby properly securing the connected parts.
The desired result was achieved: the a�ected links were constrained to move in the
same plane.
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3.4 Mini Gripper 3 ASSEMBLY

(a) Link Assembly: Side View (b) Link Assembly: Back View

3.4 Mini Gripper

The next step was the mini gripper. The gripper was assembled using the laser cut
acrylic pieces and attached the assembly to the provided mini servo.

(a) Assembled Mini Gripper: Front

View

(b) Assembled Mini Gripper: Side

View

3.5 Final Assembly

Finally, the previously assembled parts were combined in order to complete the
total assembly. The link assembly was attached to the base, and the mini gripper
was attached to the end of the link assembly. Orientation-wise, the gripper was
positioned pointing downward, though the piece can be oriented horizontally if
desired. Future testing on the vertical configuration will be conducted in order
to determine whether the alternate positioning should be used. Finally, the LSS
adapter board was attached to the supports of the base, completing the build.
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3.6 Wiring 3 ASSEMBLY

(a) Full Assembly: Extended (b) Full Assembly: Contracted

3.6 Wiring

Upon completion of the assembly, the servos were wired to the 5V regulator, the
2IO board, and the adapter board. The mini servo wire and subsequent extensions
were connected to the 2IO board, allowing for control via the LSS FlowArm soft-
ware. Finally, the power supply and micro-USB were both connected to the LSS
Adapter Board, which then completed the electrical wiring and therefore completed
the entire Lynxmotion build.

(a) Full Wiring: Side View (b) Wiring: Front View
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4 PLATFORM ANALYSIS

4 Platform Analysis

4.1 Initial Operation

It was deemed prudent to conduct an initial operations test for the robot to ensure
the build was completed properly. This test was conducted via LSS FlowArm app,
where the robot was taken through an assortment of motion tests. The rotation
about the base of the robot as well as the gripper operated as expected with little to
no issues. However, the elbow and shoulder rotation did not perform as expected.
Even after the recommended calibration [1] of the robot through the LSS FlowArm
app, the robot’s physical movement did not match that as displayed in the GUI.
A movement that was within the robot’s expected range of motion in the LSS app
could have resulted in a request outside of the capabilities of the smart servos,
resulting in a Current Overflow warning on Servo 2 and, occasionally, Servo 3.

4.2 Remedy & Characterization

To fix the problem presented by the FlowArm app, the robot platform was con-
trolled using an Arduino sketch. Fortunately, Lynxmotion provides an accessible
Arduino development library for controlling their LSS servos, the primary servos
controlling the robot. The robot arm assembly kit came with a 2IO Board which,
in addition to the ability to serve as 2RC control via the FlowArm app, can also
serve as an Arduino [4]. One can load an Arduino sketch onto the board in order
to control the robot in a user-defined manner. After initial experimentation, the
robot was able to be controlled more concretely through the Arduino sketch.

After successfully interfacing with the three Smart Servos, a characterization test
was performed in order to determine the rotation range for the individual servos.
This rotation range determines the workspace of the end-e�ector. To perform the
characterization, each servo was looped through rotation steps via Arduino, mov-
ing through +5◦ from zero until the servo responded with the Current Overflow
signal: the servo would blink its Red LED. This step-through was repeated for the
−5◦ direction. After repeating this test for each LSS Servo, the following comfort-
able operating range (the range in which the robot can feasibly operate without
failing) was determined:
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5 FLOWCHART(S)

Servo ID
Angle Range
(in degrees)

1 [-85, 125]
2 [-75, 20)
3 [-45, 60]

Table 1: Table of the operating angle ranges for the Lynxmotion Smart Servos
(LSS).

Also tested was the di�erence in movement options when controlling the LSS. It
was determined that, depending on how far the arm needs to move, timed-move
commands are preferable to immediate moves. The Lynxmotion Arduino library
provides move(angle_position) and moveT (angle_position, time) commands; the
former results in immediate movement at a pre-determined speed (i.e. quickly)
while the latter results in the desired movement in the given amount of time. So, for
large movements of, for example, >20◦, it is better to use the time move because,
as seen through experimentation, it results in smoother movements, forestalling
system jerk. On the other hand, immediate movements are better for shorter move-
ment distances because the servo does not have to restrain its movement to reach
a defined time threshold.

Finally, in order to completely replace the LSS FlowArm app, the mini-gripper
motion control was implemented using Arduino’s "Servo" library. With the imple-
mentation of this package, the user is able to control the mini-gripper servo that is
attached to the D9 pin on the robot and interact with other objects.

5 Flowchart(s)

Both the servo characterization andmovement tests can be modeled using flowcharts.

5.1 Servo Characterization

As stated previously, the servo characterization test consisted of stepping through
the servos’ workable range by ±5◦ until the current warning activated. A simple
flow diagram is seen below:
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5.2 Movement Test 5 FLOWCHART(S)

Figure 9: Servo Characterization Flowchart

5.2 Movement Test

The movement test was slightly more complex than the servo characterization. It
entailed rotating the arm to the right relative to the front of the robot, contracting
back, and moving the end-e�ector downward. Next, the bot moves to the HOME
position, flipping the gripper state (open or close) and querying the servos for rel-
evant information such as current and temperature readings. The bot then moves
to the left, extending the arm and moving the end e�ector upward. After this, the
arm moves HOME again, performing the same operations of gripper toggling and
servo querying. This sequence is allowed to run ad infinitum, allowing the user
to observe potential servo strain or movement hiccups until the device is powered
down.

The flowchart for the movement test is displayed below:
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6 CONCLUSION & FUTURE WORK

Figure 10: Movement Test Flowchart

6 Conclusion & Future Work

Project 1 consisted of the assembly and testing of the Lynxmotion 3 DoF Robot
Arm platform system. The assembly was successful, and the LSS servos were char-
acterized in order to determine the working movement range for the robot. After
some trouble with the Lynxmotion FlowArm control application, the robot was
instead controlled with an Arduino sketch.

For future projects the following will need to be implemented:

• Implement the Forward Kinematics and Inverse Kinematics code for the
robot. For Project 1, I was satisfied with inducing movement in the robot.
Moving forward, I must implement the ability to determine the coordinates
of the end-e�ector and programmatically calculate the necessary servo angles
in order to move to the desired location.

• Integrate camera sensor and, potentially, a position detection method to the
robot circuit. Find or write a program that detects basic solid colors (red,
blue, green, yellow, etc.) via RGB as well as can calculate the universal
coordinates of a desired object.

• Implement an algorithm for sorting colored objects. Synthesize the other
components of projects to complete the target objective.
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/*
    Description:  Basic Control Function Testing and Movement Test
    References: LSS control examples taken from the following:
       - LSS Sweep: LSS_Sweep.ino 
https://github.com/Lynxmotion/LSS_Library_Arduino/blob/master/exampl
es/LSS_Sweep/LSS_Sweep.ino
       - LSS Query: LSS_Query.ino 
https://github.com/Lynxmotion/LSS_Library_Arduino/blob/master/exampl
es/LSS_Query/LSS_Query.ino
       - Servo Operation: Sweep.ino 
https://github.com/arduino-libraries/Servo/blob/master/examples/Swee
p/Sweep.ino
*/    

#include <LSS.h>
#include <Servo.h>
/* SERVO Angle Position ranges (in 1/10 a degree) 
 * 
 * Servo 1: (-850, 1250] rotates end effector about universal Z axis
 * Servo 2: [-750, 200) (moves end effector vertically)
 * Servo 3: [-450, 600] (moves end effector; reach and contract)
 */

// ID set to default LSS ID = 0
#define LSS_ID1    (1)
#define LSS_ID2    (2)
#define LSS_ID3    (3)
#define LSS_BAUD  (LSS_DefaultBaud)
// Choose the proper serial port for your platform
#define LSS_SERIAL  (Serial)
// Define Pulse Widths for mini-gripper servo
#define MIN_PULSE_WIDTH (900) 
#define MAX_PULSE_WIDTH (2100)

// Create one LSS object
LSS myLSS1 = LSS(LSS_ID1);



LSS myLSS2 = LSS(LSS_ID2); // -angle values move end effector down 
(CCW servo rotation); wider range of motion (-750 to 200)
LSS myLSS3 = LSS(LSS_ID3); // -angle values move end effector back 
(contraction)

// Instantiate gripper servo
Servo myservo;
int servo_angle = 180; // Servo Position Default closed

void setup()
{
  // Initialize the LSS bus
  LSS::initBus(LSS_SERIAL, LSS_BAUD);
  myservo.attach(9, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); // attaches 
the servo on pin 9 to the servo object 
  myservo.write(servo_angle); 
  // start up time
  delay(3000);

  // Initialize LSS to position 0.0 °
  myLSS1.move(0);
  myLSS2.move(0);
  myLSS3.move(0);

  // Wait for it to get there
  delay(2000);
}

// Loops between -180.0° and 180°, taking 1 second pause between 
each half-circle move.
void loop()
{
  // movement test
  pan_right();
  mv_home();
  pan_left();
  mv_home();



}

// Useful functions

void pan_right(){
  myLSS1.moveT(500, 500);
  delay(1000);
  myLSS3.moveT(-250, 1000);
  delay(1500);
  myLSS2.moveT(-400, 1000);
  query_all();
  delay(2500);
}

void pan_left(){
  myLSS1.moveT(-500, 500);
  delay(1000);
  myLSS3.moveT(250, 1000);
  delay(1500);
  myLSS2.moveT(-400, 1000);
  query_all();
  delay(2500);

}

void mv_home() {
  if (abs(myLSS1.getPosition()) > 300){
    myLSS1.moveT(0, 900);
  }
  if (abs(myLSS2.getPosition()) > 200){
    myLSS2.moveT(0, 900);
  }
  if (abs(myLSS3.getPosition()) > 200){
    myLSS3.moveT(0, 900);



  }
  else{
    myLSS1.move(0);
    myLSS2.move(0);
    myLSS3.move(0);
  }
  query_all();
  servoAlternate();
  delay(2000);
}
void query(LSS servo){
  Serial.println("\r\nQuerying servo...");

  // Get LSS ID, position, speed, current, voltage, temperature
  uint8_t id = servo.getServoID();
  int32_t pos = servo.getPosition();
  uint8_t rpm = servo.getSpeedRPM();
  uint16_t current = servo.getCurrent();
  uint16_t voltage = servo.getVoltage();
  uint16_t temp = servo.getTemperature();

  // Header 2
  Serial.println("\r\n\r\n---- LSS telemetry ----");

  // Display LSS position, speed, current, voltage, temperature
  Serial.print("Servo ID: ");
  Serial.println(id);
  Serial.print("Position  (1/10 deg) = ");
  Serial.println(pos);
  Serial.print("Speed          (rpm) = ");
  Serial.println(rpm);
  Serial.print("Current          (mA) = ");
  Serial.println(current);
  Serial.print("Voltage         (mV) = ");
  Serial.println(voltage);
  Serial.print("Temperature (1/10 C) = ");
  Serial.println(temp);



}

void query_all(){
  query(myLSS1);
  query(myLSS2);
  query(myLSS3);
}  

void servoAlternate(){
  // pos 0 = open
  // pos 180 = closed
  /* FUTURE To-Do: Figure out when to detach the servo
   * (via servo.detach()) in order to make the servo go limp.
  */
  if (myservo.read() == 0 and servo_angle == 0){
    servo_angle = 180;
    myservo.write(servo_angle);
    delay(150);
  }
  else{
    servo_angle = 0;
    myservo.write(servo_angle);
    delay(150);
  }
}
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2 PROJECT 2 GOALS

1 Introduction

EML 6805 is a graduate-level course in which students learn the fundamentals of
robotics. For Project 1 of this course, I assembled and tested the Lynxmotion robot
arm with three degrees of freedom (3DoF) for bare-bones operation such as basic
movement of the three servos and interaction of the arm’s mini-gripper. With its
completion, more complex features can be designed and integrated into the robot’s
operation.

Figure 1: Assembled Lynxmotion Platform

2 Project 2 Goals

The course progressed to Project 2, and keeping the above in mind, features for the
robot’s use were specified. Due to the complexity of the initial purpose of the arm
(a variable colored-block sorter), the scope of the project was reduced to be more
manageable for both the time constraint and my experience level. The updated
plan for the arm is for it to be used as a "pick and place" (P&P) bot that can receive
input colors to determine the object’s target position.

In order to achieve this goal, there were three main tasks for Project 2:

• Implement a color detection system

2



2 PROJECT 2 GOALS

• Derive and program forward and inverse kinematics for the Lynxmotion arm

• Implement object detection in order to detect the position of the P&P object.

The remainder of this report will discuss how these tasks were completed and their
implications for the third project.
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3 COLOR DETECTION

3 Color Detection

3.1 Motivation

Ultimately, the robot system should be able to detect a user-presented input color
and use this color to place the given block on the associated colored platform.
For example, given the input color red, the robot must place the block on the red
platform. This color detection method was implemented using Python.

3.2 Color Filtering Overview

Using Python’s OpenCV library as well as Numpy, an HP laptop webcam was
controlled to capture images in a video stream and apply a filter that isolates a
user-determined color. Based on available OpenCV tutorials [1],[2], this operation
was relatively simple to program. To filter colors in OpenCV, the Hue-Saturation-
Value (HSV) color representation is used. OpenCV uses Blue-Green-Red (BGR)
representation by default, but this format is not conducive for color filtering along
a specific hue channel. Changes along a given BGR channel (for example, slight
variations along the Green channel) can result in a completely di�erent base hue
than desired [1].

HSV solves this problem by allowing the user to represent an entire range of colors
for a given pigment, for example the spectrum of blues, by defining the Hue value
(the base color) and allowing variations along this hue using Saturation (the amount
of "gray" in the color) and Value (the intensity of the color) [3]. By defining static
upper and lower bounds for the Saturation and Value parameters for all hues, one
can then focus on finding the optimal Hue limits for the desired color filtering.

3.3 De�ning the HSV Bounds

For this project, the colors used are red, blue, green, and yellow. The goal is to be
able to detect these colors within a given image, so it was necessary to find suitable
HSV ranges to represent them. The Hue ranges were found using the GNU Image
Manipulation Program, also known as GIMP [1]. GIMP represents HSV values in
the following way:

Hue values range from 0 to 360, where the colors of the color spectrum are spread
evenly across this range (Red: 0-59 & 360, Yellow: 60-119, Green: 120-179, Cyan:b180-
239, Blue:b240-299, and Magenta: 30-359). This is the conventional representation
for the Hue parameter [3]. The Saturation and Value parameters range from 0-100,
representing the percentage of grayness and intensity, respectively. To find the

4



3.3 De�ning the HSV Bounds 3 COLOR DETECTION

proper Hue bounds, the Saturation and Value parameters were set to max (100)
while the Hue parameter was varied along its range of values to determine an ad-
equate estimate for a given color. After finding this baseline, the Hue values were
reduced by half to fit within OpenCV’s Hue range, which spans from 0 to 179 [4].

Figure 2: This figure displays GIMP’s color tool. Shown in the image is the HSV
representation for pure green (120, 100, 100). In BGR, the color would be repre-
sented as (0, 255, 0).

Naturally, the quantitative nature of computers vs. the qualitative color classifica-
tion process used by humans will produce di�ering results, so trial-and-error was
necessary to determine a satisfying range of values for red, blue, green, and yellow
respectively that allowed some convergence between the two entities. After much
testing, the following ranges were determined for each pigment:

Color OpenCV Hue Range

Red [0, 7] ∪ [165, 179]

Yellow [20, 35]

Green [40, 90]

Blue [95, 140]

In OpenCV, Saturation and Value both range from 0 to 255, so the following bounds
were used on the recommendation of online resources [2] as well as trial-and-error:

• Saturation: 100-255

• Value: 20-255
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3.4 Image Color Detection 3 COLOR DETECTION

3.4 Image Color Detection

After determining the HSV boundary parameters for each color, the captured
frames could then be filtered for one of the four colors. For a given OpenCV
image (also known as a frame) we convert it to its HSV value. Next, we create
masks to isolate a given color using the defined lower and upper bounds for a
given color’s HSV representation. Finally, we perform a bitwise-AND operation on
the original BGR frame using the mask. This results in a BGR image that is mostly
black except for the pixels in the image that have the desired color. An example
of the filtering applied on a Rubik’s cube1 is presented below.

1Image URL: https://richardnewmansays.blogspot.com/2010/11/blog-post_13.html
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3.4 Image Color Detection 3 COLOR DETECTION

Figure 3: The output of the color detection program on a Rubik’s Cube image.
The colors filtered in order are red, yellow, green, and blue.
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3.5 Further Implementation

With the basic implementation of color detection complete, the next objective was
to apply this detection in real-time. To do so, OpenCV is used to capture frames
from a laptop camera. A sub-region of the captured image is defined to be in the
bottom-left section of the frame. This will be the region the user displays the de-
sired input color. The aforementioned color detection algorithm is applied to this
sub-region, with the program filtering for each color. The resulting intermediate
output is an array of four masked images: red, yellow, green, and blue in that or-
der. To determine if a color is present within the sub-region, the masked images
are tested using the following: for a given sub-region, the center pixel and the sur-
rounding one-pixel area are checked for the presence of color. Each pixel has a
BGR value (B, G, R) and these values can be summed to determine if the pixel is
within the color threshold.

Because the images are masked—flooring non-relevant pixels to black (B,G,R) =
(0,0,0)—the sum for a given pixel will have a value of 0. Therefore, any non-zero
value will correspond to the desired color. If all nine of the polled pixels have non-
zero sums, one can be reasonably sure that the color is present in the sub-region.
For greater assurance, the polled area can be expanded.

To prevent false-positives, the program must reach a threshold of consecutive color
detections for a single color. Once this threshold is reached, the program deter-
mines the color is present and can theoretically communicate which color it is for
further operation of the robot arm.

This result can be used for the following future implementation. If one of the user-
defined colors are present, the program determines that this color corresponds to
the color of the block’s target platform. Then, combined with the knowledge of
where the block is currently located, the robot can perform its pick-and-place op-
eration, calculating the necessary joint angles to reach both the block’s original
position and its target. Of course, this assumes that the platforms are in an en-
vironment that is essentially isolated from colors that would introduce undesired
noise to program’s operation. For visual assistance, a flowchart model of the color
detection algorithm is presented.
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Figure 4: A flowchart of the overall color detection algorithm as well as sub-
processes.

4 Lynxmotion Kinematics

4.1 Motivation

The robot should be able to calculate its inverse kinematics to determine the neces-
sary angles each joint must have in order to reach a user-specified position within
its range. It should also be able to calculate its forward kinematics, the robot’s
current position based on the status of its constituent servo motors. This feature
will be useful in the case where the user or the robot itself manages to lose track
of its current position.

4.2 Forward Kinematics

Though the 3 DoF arm has a mechanical makeup consisting of a four-bar linkage,
the bot’s behavior emulates a 2R planar bot on a rotating base and can therefore be
modeled as such [5]. The robot’s servos measure their respective angles relative to
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the a-axis (servo 1) and the o-axis (servos 2 and 3), meaning at the RESET position,
servo 1 rotates about the z-axis and servos 2 and 3 rotate about the y-axis. Knowing
this, one can calculate the forward kinematics of the robot. Because the end-e�ector
does not have its own rotational degree of freedom, we are not concerned with the
e�ector orientation; it is always pointed downward (-z direction).

Figure 5: Simple schematic of the 2R with rotating base model representation of
the Lynxmotion 3DoF robot arm.]

Using trigonometry and correcting for the behavior of the servos when using pos-
itive and negative angle entries, the forward kinematics for the robot end-e�ector
is as follows:

0



?G
?H
?I

�

=



(;2 cos \2 − ;1 sin \3) cos \1
(−;2 cos \2 + ;1 sin \3) sin \1

;2 sin \2 + ;1 cos \3


(1)

where \1, \2, \3 are angles responding to servos 1, 2, and 3, respectively. The uni-
versal frame can be recovered by translating the end-e�ector along the z-axis by
the height of the robot base (which we call ’b’).

The validity of this model was verified using expected values for given angle con-
figurations. For example, when all servo angles are at their zero values, one would
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expect the robot to be in its reset position 0
[
?G ?H ?I

])
�
=

[
;2 0 ;1

])
relative

to the robot base frame. For the configuration where servo angles 1 and 3 are −90◦,

it is expected that the end-e�ector’s position would be
[
0 ;1 + ;2 0

])
. This is the

position where the robot arm would be completely horizontal while lying along the
+y direction. In both cases, the forward kinematics equations result in the correct
configuration and did so for other configurations not mentioned in this report.

4.3 Inverse Kinematics

The next step in the process was the derivation of the inverse kinematics. To derive
the proper equations, the process presented in Dr. Rainer Hessmer’s 2009 article,
Kinematics for Lynxmotion Robot Arm [5] was followed. In this article, Dr. Hessmer
uses a combination of the law of cosines, geometric and trigonmetric reasoning,
and algebraic manipulation to calculate the angles for a given position in space.
Notable about this article’s application in this project is that the angles used in the
articles are not necessarily correlative to those used by the Lynxmotion Servos.
Geometric reasoning was used in order to relate the angles used in the article to
the arm’s servo angles.

The results of the calculation are the following for a given (?G , ?H, ?I):

\1 = −�)�#2(?H, ?G)

\2 = \0 + \3 −
c
2

\3 = �)�#2(I
′
, 3) − �)�#2(:2, :1)

I
′
= ?I − 1

3 =

√
?2G + ?2H

:1 = ;2 + ;1 cos \0
:2 = ;1 sin \0

cos \0 =
32+I

′2−;2
1
−;2

2

2;1;2

\0 = �)�#2(
√
1 − cos2 \0, cos \0)

where \0 is the angle link 2 makes with link 1. With these equations, the robot
arm can now generate the necessary angles to move to specified locations within
its angle range. A more detailed derivation of the forward and inverse kinematics
are presented in the Appendix.
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5 Object Detection

5.1 Motivation

The purpose of this module was to implement an object detection system to deter-
mine the position of the P&P object. The idea was that one could use the same
camera used for color detection for this purpose.

5.2 Decision to Jettison

While a starting point for object detection was achieved in the form of detecting
rectangles using OpenCV, it was soon discovered that object detection was an
unnecessary feature to implement for several reasons:

1. Rather than running an object detection algorithm to detect a cube for every
frame captured by the camera, one could instead use variables to keep track
of the location of the cube. Setting the cube location upon startup of the
program and updating the position over the course of operation is much less
resource-intensive than the alternative.

2. Time: Color detection, Robot Kinematics, and Object Detection were all un-
explored territories for the author. After successfully achieving both color
detection and kinematics functionality, it was decided that it would be bet-
ter to use the remaining project time testing and reiterating these features
than working with unknown frameworks such as TensorFlow or other deep-
learning frameworks.

3. Resource E�ciency: As stated above, the object detection algorithm would
introduce more resource overhead to the project, extending the running time
of the program for a single operation. Practically speaking, the introduction
and handling of two or three additional variables in the program code is
more economical than running an algorithm to achieve the same purpose
and would likely be the preferred choice in an industry setting.

As a result, I have elected to abstain from incorporating this feature into the project.

6 Block Diagram(s)

The color detection and kinematics features introduce the ability to both collect
an input and operate the robot arm in a specified way. To give a brief outline
of the idealized operation of the robot, a block diagram as well as enumerated
description is included below:
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Figure 6: Flow overview of the robot P&P operation.
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7 CONCLUSION AND FUTURE WORK

1. Power on Robot + move Home

2. Initial Setup

• Configure target colored platforms

• Place cube; set initial position

3. Wait for user color-input

4. Run color detection algorithm; update target variable

5. Perform P&P operation

• Move arm to block’s current position

• Grab the block

• Move to target position

• Place block

• Update block position variables.

Ultimately, this is how the robot should operate. With the core features pro-
grammed, the focus for project 3 will be the synthesis of these features and the
practical setup of the operation environment.

7 Conclusion and Future Work

In this report, the color detection and kinematic calculations for the Lynxmotion
3DoF Robot Arm were discussed in-depth. Justification for the removal of the
object detection feature from the plan was also provided. As the course moves to
Project 3, the following must still be achieved:

• Proper coalescence of the aforementioned features (especially Python -> Ar-
duino communication).

• Robot Operation Environment (colored platforms, cube, proper heights and
positions, etc. )

• P&P testing (proper robot movement speeds, best object for reproducible
results)

Project 2 was very much theory-based, so the third project will consist of using the
theory and constructed framework for real-world use.
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A KINEMATICS DERIVATIONS

Appendix

A Kinematics Derivations

A.1 Forward Kinematics

Deriving the forward kinematics is relatively straight-forward. We trigonometry to
express the components of the end-e�ector’s position in terms of the robot’s link
lengths.

(a) Reset Position (b) Rotated Position

Figure A.1: Lynxmotion 3DoF Simplified Model

At \1 = 0 and arbitrary \2, \3, the components of the end-e�ector position are:

G = ;1 sin \3 + ;2 cos \2

H = 0

I = ;1 cos \3 + ;2 sin \2

Based on how the coordinate system is defined, when \1 =
−c
2
, the coordinates are:
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G = 0

H = ;1 sin \3 + ;2 cos \2

I = ;1 cos \3 + ;2 sin \2

We can see that the x and y coordinates are similar save for the rotation angle of
\1. This makes sense due to servo 1’s circular rotation. Therefore, we can write:

G = (;1 sin \3 + ;2 cos \2) cos \1

H = −(;1 sin \3 + ;2 cos \2) sin \1

I = ;1 cos \3 + ;2 sin \2

However, from testing, we know that \3 has flipped behavior such that negative
angles send the arm outward and positive angles make the arm contract. Noting
this, the formula can be adjusted by \3 = −\3:



G

H

I


=



(−;1 sin \3 + ;2 cos \2) cos \1
(;1 sin \3 − ;2 cos \2) sin \1

;1 cos \3 + ;2 sin \2


(A.1)

A.2 Inverse Kinematics

The first step in the inverse kinematics derivation is to draw the figure with the
angles used by Dr. Hessmer [5]. As shown in Figure A.2, \0 is the angle that link 2
makes with link 1. The components of the end-e�ector position must be expressed
using this angle in order to follow the method outlined in Dr. Hessmer’s article.

We observe the case where \1, the angle responsible for rotation about the z-axis,
is 0. For some arbitrary \3 and \0, we can express the x and z components of the
end-e�ector’s position as:

G = ;1 sin \3 + ;2 sin(\3 + \0)

I = ;1 cos \3 + ;2 cos(\3 + \0)

We can use the law of cosines and the sum and di�erence trigonometry formulas
to for simplification to receive:

G2 + I2 = ;2
1
+ ;2

2
+ 2;1;2 cos \0

∴ cos \0 =
G2 + I2 − ;2

1
− ;2

2

2;1;2
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Figure A.2: Simplified Lynxmotion Model with relevant angles. Note the inclusion
of \0 which is the angle link 2 makes with link 1.

Rather than use the inverse cosine function, Dr. Hessmer uses ATAN2 to derive

\0, noting that we can express sin \0 as ±
√
1 − cos2 \0:

\0 = �)�#2(
√
1 − cos2 \0, cos \0) (A.2)

After deriving \0, change-of-variables was used in order to isolate and directly
solve for \3. Following Dr. Hessmer’s process and using trial-and-error, it was
determined that \3 is expressed as

\3 = �)�#2(I, G) − �)�#2(:2, :1) (A.3)

where :1 = ;2 + ;1 cos \0 and :2 = ;1 sin \0.

For the Lynxmotion robot specifically, we can substitute, I
′
= ?I − 1 for z where

’b’ is the height from the ground to the robot base and 3 =

√
?2G + ?2H for x. Do-

ing so, we determine that the equations for the Lynxmotion Inverse Kinematics are:
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B CODE

\1 = −�)�#2(?H, ?G)

\2 = \0 + \3 −
c

2

\3 = �)�#2(I
′

, 3) − �)�#2(:2, :1)

I
′

= ?I − 1

3 =

√
?2G + ?2H

:1 = ;2 + ;1 cos \0

:2 = ;1 sin \0

cos \0 =
32 + I

′2 − ;2
1
− ;2

2

2;1;2

\0 = �)�#2(
√
1 − cos2 \0, cos \0)

(A.4)

for a user-specified (?G , ?H, ?I). Fortunately, these equations are easily implemented
into a Python program script making the calculation simple.

B Code

Included below are the code excerpts for both color detection and kinematics.
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3 ARDUINO-PYTHON COMMUNICATION

1 Introduction

In Project 1, the Lynxmotion 3DoF Robot Arm was assembled and tested for op-
eration behavior. For Project 2, the robot’s kinematic equations were derived and
implemented in the form of a Python calculator script; a means for color detection
using a laptop camera was also implemented. With the completion of these two
projects, the robot system was primed for Project 3.

2 Project 3 Objectives

The main objective of Project 3 was the synthesis of the previous two projects.
Since the robot was developed to be controlled via Arduino in Project 1, and the
color detection system was implemented via Python in Project 2, the two compo-
nents need the ability to interact with one another. This was achieved using serial
communication.

3 Arduino-Python Communication

To establish serial communication between the two components, I developed the
two programs’ interactions separately. Meaning, both the Python program and
the Arduino sketch’s behavior when receiving/sending serial data were developed
divorced from one another, tested, and finally—like two puzzle pieces—linked to-
gether once each program worked as expected1.

3.1 Python

The Python end of the serial link was programmed using the pySerial library [1].
The pySerial object was configured to work at a 19200 baud rate using a laptop
USB port as the COM channel. It then enters a listening loop, waiting for the Ar-
duino to connect to the serial channel. After some initial testing, it was discovered
that the two systems needed some form of synchronization; otherwise, the two pro-
grams have the chance of "dropping" communication, entering into endless loops.
To perform this synchronization, the Python program is set to enter a while loop
in which it checks for available serial data every two seconds. If the data is of the
form: "LYNX: Associate Colors.\n", the program then establishes that the robot
program is to start zmc exits the loop.

1I refer to this Python-Arduino communication as "pyduino"
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From here, the Python program enters another while loop, this time for the du-
ration of the Lynxbot’s operation. In this loop, the program listens to the COM
port for available serial data. If the data received is the user-defined signal con-
veying the Arduino is ready for input (’I’), the program enters its Color Detection
mode where it captures video frames from the user’s laptop camera until a color
(red, yellow, green, or blue) is detected 110 consecutive times. Upon reaching this
threshold, the program then sends a byte that communicates which color was de-
tected. The correlation is as follows: [red, yellow, green, blue] = [0, 1, 2, 3] where
the numeric values are transmitted as ASCII characters. After transmitting the
data, the program returns to listening for the Arduino READY signal.

3.2 Arduino

Since serial communication is easily implemented in Arduino, the Arduino side
of the pyduino serial communication was as simple as beginning the Serial com-
munication at the pyduino baud rate (19200) and sending the aforementioned
PROGRAM_START and READY signals to through the channels. The problem,
however, came with the Lynxbot system’s serial communication requirements.

The Arduino model used for this project is an Arduino Uno, which has only one
hardware serial pinout. The Lynxbot system however, requires at least two serial
communication channels: one for the Lynxmotion Smart Servo (LSS) serial bus
and the other for the pyduino communication. Since the pyduino communciation
occurs via USB, a hardware serial connection, it was necessary to implement an-
other serial port for the LSS bus using the SoftwareSerial Arduino library [2][3].

Pins 8 and 9 on the Arduino were then reserved for the RX and TX lines of the
SoftwareSerial communication, allowing the Arduino to both control the Lynxmo-
tion servos (and the RC mini-gripper servo) on this serial line (115200 baud) and
interact with the Python program2.

Figure 1 is a screenshot of the Arduino program at work. Arduino IDE’s Serial
Monitor was used to pass inputs to the Lynxbot in place of the Python code. Many
additional printouts were added as well to aid debugging and ensure proper func-
tionality. The image shows the program starting with color association (elaborated
on in the next section) which then begins its operation after the fourth position
is filled. It then depicts one pick and place operation in which the color code for

2A large "thank you" to user-moderator dialfonzo on the RobotShop Community forum for his
assistance in implementing this properly without system failure. His timely assistance on this matter
was crucial to the success of this project.
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the Red color was provided (the program assumes the object starts at the posi-
tion associated with Green). It then outputs the servo angles associated with the
object’s current position and its target (using test values). Finally, after a RESET,
Red was input again as the target color to which the program informs the user that
the object is there already.

4 Project Operation Flow

The full program works as follows: Begin by running the Python code (let’s call
it Pybot). Pybot creates the necessary variables for the color detection and serial
connection, entering into the first serial "checkpoint" afterward. At this point, the
Arduino can be connected to the laptop via USB. The Arduino defines its nec-
essary variables and creates the objects for controlling the LSS servos and the
mini-gripper. During the setup function, the Arduino initializes the SoftwareSerial
bus (toggling an LED on the system as a visual indicator) and moves the robot to
its RESET position (all servos at 0◦).

The Arduino then connects to the pyduino channel. At this point, Pybot detects
this connection, exiting its first checkpoint and entering the second in which it
waits for the PROGRAM_START signal. The Arduino sends this signal and then
sends its READY signal after a brief delay. Pybot gets the PROGRAM_START
message and exits checkpoint two. It then enters a perpetual loop of waiting for
the READY signal, detecting a color, and transmitting the detected color data.

Arduino then associates the pick and place positions with a color. It begins with
Position 1, then proceeds to define positions 2, 3, and 4. Each position gets a color
(Red, Yellow, Green, or Blue)3. With this step, the "setup" is complete and the
Arduino enters its loop function.

In said loop function, the Arduino listens to the pyduino channel for color detec-
tion data. If the color received is associated with the pick and place object’s current
position, the program does nothing and e�ectively discards this data. Otherwise,
the program performs a pick and place operation, moving the object from its cur-
rent position to the target position based on the provided color. The program
then updates the pick and place object’s position and sends the READY signal to
Pybot for another color input. This cycle repeats as the user wishes. A high-level
overview of the program flow is presented in Figure 2.

3At this time, I have not implemented a check for multiple positions having the same associated
color for the setup phase. However, this problem is mitigated by user action, so it is not an issue
for the current purpose.
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Figure 1: Output for the test version of the Arduino code. The ’I’s throughout the
image are the READY signals transmitted by the Arduino.
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Figure 2: The figure shows the high-level programmatic flowchart for the entire
Lynxmotion Robot Arm system. The Python portions are colored green, and the
Arduino portions are orange. Note that the two programs are mostly isolated save
for two connection points: the serial connection (solid, no arrow) and the READY
signal point (dotted)
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5 Operation Setup

The robot’s environment construction had three components: base construction,
pick and place object selection, and position defining. The project’s base is a tri-
fold cardboard presentation board. This was chosen due to the easy modification
and inexpensive replacement of cardboard. Through testing done in the previous
projects, it was observed that the robot would undergo extraneous motion during
operation—such as the robot rotating about its o-axis—due to high torque. This
movement would make calibration of the end-e�ector ine�ective if not impossible
because the robot’s position in the universe frame would change at unknown val-
ues. As a result, the robot was secured in place by pinning the bot to a block of
(level) wood via three nails that were hammered through the robot base’s pinning
holes. The fourth pinning hole was inaccessible due to the Arduino/LSS Adapter
configuration, so this pin was secured via duct tape.

Figure 3: An image of the Lynxbot pinned to the cardboard.

The next step in the operation setup was the choice of the pick and place object.
For this, it was desired that the object be rectangular to be easily handled by the
robot and remain flat on the environment surface. The object also must be dense
enough the prevent easy displacement but light enough to be manipulated consis-
tently by the robot without straining the motors. With these conditions in mind,
the object chosen for the project was a rubber eraser.

Finally, the positions (in universe frame) onto which the object will be placed were
chosen. This step included much trial-and-error, accounting for the ease with which
the robot arm could reach the position in terms of servo load while maintaining
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visual spatial variety to showcase the robot’s range. The inverse kinematics4 devel-
oped in the previous project helped this process proceed smoothly, facilitating the
testing of numerous positions until suitable ones were found. The selected posi-
tions and their corresponding servo angles are tabulated below. The position with
decimal y-value (16, 13.6, 5.5) was chosen because it lies on a circle of a defined ra-
dius (21cm). Other positions were chosen to showcase the robot’s ability to sweep
to a range of positions.

Position (x, y, z)
(cm)

Servo Angles (◦)
(Servo 1, Servo 2, Servo 3)

(15, -10, 5.5) (33.7, -42.7, 17.5)

(16, 13.6, 5.5) (-40.4, -39, 27.5)

(19, 0, 5.5) (0, -41.6, 20.8)

(24, 9, 7) (-20.5, -27.4, 40.5)

Table 1: Chosen positions and their corresponding angles.

4It was observed that for greater distances in the x-direction (Ex. 24cm), the end-e�ector traveled
further vertically than shorter distances (16cm). As a result, greater distances were calculated at
increased z-values such as 6.5cm or 7 cm rather than 5.5cm. It is unknown why this behavior
occurred; perhaps the link measurements require more accuracy and precision.
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With the positions defined, the user can choose the colors to associate with these
positions and operate the robot as discussed previously. Diagrams displaying ex-
ample configurations are displayed below.

Figure 4: Basic project setup (Top View).
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(a) Example color configuration.

(b) Alternate color configuration
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7 CONCLUSION

6 Results

After completing the code and constructing the environment, the project was tested
for operation. While the robot was able to interact when the eraser when the eraser
was properly aligned, the orientation of the eraser had a larger margin for error
due to its width. As a result, the eraser is now used such that it rests on its longest
face, minimizing the width of the piece that the gripper must hold. This resulted in
more consistent pick and place results that allowed room for user placement errors.

The robot was tested in a number of color configurations. It behaved as desired
for each configuration with little problems. Occasionally, Servo 3 did result in the
current overload, but this is a problem that has appeared sparingly since Project 1.
After a reset (unplugging the Arduino from the laptop and toggling the 12V robot
power supply), this problem appears to disappear.

Figure 6: An image of the Lynxbot system with Color Detection.

7 Conclusion

Overall, the robot system works as expected, being able to asscociate colors with
the defined positions, manipulate the eraser object between positions, and doing so
consistently while maintaining satisfactory operating conditions such as LSS, mini-
gripper, and Arduino temperatures. As a result, this project may be considered a
success.
The code for both components of pyduino as well the kinematics may be found at
the following link: https://github.com/tjdwill/Lynxbot
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